Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The recurrent assembly of C4 photosynthesis, an evolutionary tale

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Today, plants using C4 photosynthesis are widespread and important components of major tropical and subtropical biomes, but the events that led to their evolution and success started billions of years ago (bya). A CO2-fixing enzyme evolved in the early Earth atmosphere with a tendency to confuse CO2 and O2 molecules. The descendants of early photosynthetic organisms coped with this property in the geological eras that followed through successive fixes, the latest of which is the addition of complex CO2-concentrating mechanisms such as C4 photosynthesis. This trait was assembled from bricks available in C3 ancestors, which were altered to fulfill their new role in C4 photosynthesis. The existence of C4-suitable bricks probably determined the lineages of plants that could make the transition to C4 photosynthesis, highlighting the power of contingency in evolution. Based on the latest findings in C4 research, we present the evolutionary tale of C4 photosynthesis, with a focus on the general evolutionary phenomena that it so wonderfully exemplifies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aubry S, Brown NJ, Hibberd JM (2011) The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J Exp Bot 62:3049–3059

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Bek EJ (2008) Multiple Rubisco in porteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot 59:1525–1541

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  PubMed  CAS  Google Scholar 

  • Beerling DJ, Royer DL (2011) Convergent Cenozoic CO2 history. Nat Geosci 4:418–420

    Article  CAS  Google Scholar 

  • Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Article  PubMed  CAS  Google Scholar 

  • Berner RA (1998) The carbon cycle and carbon dioxide over Phanerozoic time: the role of land plants. Phil Trans R Soc B 353:75–82

    Article  Google Scholar 

  • Besnard G, Christin PA (2010) Evolutionary genomics of C4 photosynthesis in grasses requires a large species sampling. C R Biol 333:577–581

    Article  PubMed  CAS  Google Scholar 

  • Besnard G, Muasya AM, Russier F, Roalson EH, Salamin N, Christin PA (2009) Phylogenomics of C4 photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. Mol Biol Evol 26:1909–1919

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (2010) Early evolution of photosynthesis. Plant Physiol 154:434–438

    Article  PubMed  CAS  Google Scholar 

  • Bouchenak-Khelladi Y, Verboom GA, Hodkinson TR, Salamin N, Francois O, Chonghaile GN, Savolainen V (2009) The origins and diversification of C4 grasses and savanna-adapted ungulates. Glob Change Biol 15:2397–2417

    Article  Google Scholar 

  • Brown WV (1975) Variations in anatomy, associations, and origins of Kranz tissue. Am J Bot 62:395–402

    Article  Google Scholar 

  • Brown NJ, Newell CA, Stanley S, Chen JE, Perrin AJ, Kajala K, Hibberd JM (2011) Independent and parallel recruitment of preexisting mechanisms underlying C4 photosynthesis. Science 331:1436–1439

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496

    Article  PubMed  CAS  Google Scholar 

  • Busch FA, Sage TL, Cousins AB, Sage RF (2013) C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ 36:200–212

    Article  PubMed  CAS  Google Scholar 

  • Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158

    Article  CAS  Google Scholar 

  • Christin PA, Besnard G (2009) Two independent C4 origins in Aristidoideae (Poaceae) revealed by the recruitment of distinct phosphoenolpyruvate carboxylase genes. Am J Bot 96:2234–2239

    Article  PubMed  CAS  Google Scholar 

  • Christin PA, Salamin N, Savolainen V, Duvall MR, Besnard G (2007) C4 photosynthesis evolved in grasses via parallel adaptive genetic changes. Curr Biol 17:1241–1247

    Article  PubMed  CAS  Google Scholar 

  • Christin PA, Besnard G, Samaritani E, Duvall MR, Hodkinson TR, Savolainen V, Salamin N (2008) Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr Biol 18:37–43

    Article  PubMed  CAS  Google Scholar 

  • Christin PA, Samaritani E, Petitpierre B, Salamin N, Besnard G (2009a) Evolutionary insights on C4 photosynthetic subtypes in grasses from genomics and phylogenetics. Genome Biol Evol 1:221–230

    Article  PubMed  CAS  Google Scholar 

  • Christin PA, Petitpierre B, Salamin N, Buchi L, Besnard G (2009b) Evolution of C4 phosphoenolpyruvate carboxykinase in grasses, from genotype to phenotype. Mol Biol Evol 26:357–365

    Article  PubMed  CAS  Google Scholar 

  • Christin PA, Freckleton RP, Osborne CP (2010) Can phylogenetics identify C4 origins and reversals? Trends Ecol Evol 25:403–409

    Article  PubMed  Google Scholar 

  • Christin PA, Osborne CP, Sage RF, Arakaki M, Edwards EJ (2011a) C4 eudicots are not younger than C4 monocots. J Exp Bot 62:3171–3181

    Article  PubMed  CAS  Google Scholar 

  • Christin PA, Sage TL, Edwards EJ, Ogburn RM, Khoshravesh R, Sage RF (2011b) Complex evolutionary transitions and the significance of C3–C4 intermediate forms of photosynthesis in Molluginaceae. Evolution 65:643–660

    Article  PubMed  Google Scholar 

  • Christin PA, Edwards EJ, Besnard G, Boxall SF, Gregory R, Kellogg EA, Hartwell J, Osborne CP (2012a) Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer. Curr Biol 22:445–449

    Article  PubMed  CAS  Google Scholar 

  • Christin PA, Wallace MJ, Clayton H, Edwards EJ, Furbank RT, Hattersley PW, Sage RF, Macfarlane TD, Ludwig M (2012b) Multiple photosynthetic transitions, polyploidy and lateral gene transfer in the grass subtribe Neurachninae. J Exp Bot 63:6297–6308

    Article  PubMed  CAS  Google Scholar 

  • Christin PA, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodkinson TR, Garrison LM, Vorontsova MS, Edwards EJ (2013) Anatomical enablers and the evolution of C4 photosynthesis in grasses. Proc Natl Acad Sci USA 110:1381–1386

    Article  PubMed  CAS  Google Scholar 

  • Dengler NG, Dengler RE, Hatterlsey PW (1985) Differing ontogenetic origins of PCR (“Kranz”) sheaths in leaf blades of C4 grasses (Poaceae). Am J Bot 72:284–302

    Article  Google Scholar 

  • Dengler NG, Donnelly PM, Dengler RE (1996) Differentiation of bundle sheath, mesophyll, and distinctive cells in the C4 grass Arundinella hirta (Poaceae). Am J Bot 83:1391–1405

    Article  Google Scholar 

  • Dias MC, Bruggemann W (2010) Water-use efficiency in Flaveria species under drought-stress conditions. Photosynthetica 48:469–473

    Article  CAS  Google Scholar 

  • Duvall MR, Saar DE, Grayburn WS, Holbrook GP (2003) Complex transitions between C3 and C4 photosynthesis during the evolution of Paniceae: a phylogenetic case study emphasizing the position of Steinchisma hians (Poaceae), a C3–C4 intermediate. Int J Plant Sci 164:949–958

    Article  CAS  Google Scholar 

  • Eastman PA, Dengler NG, Petersen CA (1988) Suberized bundle sheaths in grasses (Poaceae) of different photosynthetic types I. Anatomy, ultrastructure and histochemistry. Protoplasma 142:92–111

    Article  CAS  Google Scholar 

  • Edwards EJ, Ogburn RM (2012) Angiosperm responses to a low-CO2 world: CAM and C4 photosynthesis as parallel evolutionary trajectories. Int J Plant Sci 173:724–733

    Article  CAS  Google Scholar 

  • Edwards EJ, Smith SA (2010) Phylogenetic analyses reveal the shady history of C4 grasses. Proc Natl Acad Sci USA 107:2532–2537

    Article  PubMed  CAS  Google Scholar 

  • Edwards EJ, Still CJ (2008) Climate, phylogeny and the ecological distribution of C4 grasses. Ecol Lett 11:266–276

    Article  PubMed  Google Scholar 

  • Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Since-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196

    Article  PubMed  CAS  Google Scholar 

  • Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, C4 Grasses Consortium (2010) The origins of C4 grasslands: Integrating evolutionary and ecosystem science. Science 328:587–591

    Google Scholar 

  • Ehleringer J, Bjorkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Plant Physiol 59:86–90

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer JR, Sage RF, Flanagan LB, Pearcy RW (1991) Climate change and the evolution of C4 photosynthesis. Trends Ecol Evol 6:95–99

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112:285–299

    Article  Google Scholar 

  • Ellis RP (1984) Eragrostis walteri A 1st record of non-Kranz anatomy in the subfamily Chloridoideae (Poaceae). S Afr J Bot 3:380–386

    Google Scholar 

  • Farquhar J, Peters M, Johnston DT, Strauss H, Masterson A, Wiechert U, Kaufman AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449:706–709

    Article  PubMed  CAS  Google Scholar 

  • Fiz-Palacios O, Schneider H, Heinrichs J, Savolainen V (2011) Diversification of land plants: insights from a family-level phylogenetic analysis. BMC Evol Biol 11:341

    Article  PubMed  Google Scholar 

  • Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484

    Article  PubMed  CAS  Google Scholar 

  • Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65:631–658

    Article  PubMed  CAS  Google Scholar 

  • Furbank RT (2011) Evolution of the C4 photosynthetic mechanism: are there really three C4 acid decarboxylation types? J Exp Bot 62:3103–3108

    Article  PubMed  CAS  Google Scholar 

  • Gamberale-Stille G, Balogh ACV, Tullberg BS, Leimar O (2012) Feature saltation and the evolution of mimicry. Evolution 66:807–817

    Article  PubMed  Google Scholar 

  • Ghannoum O, Evans JR, Chow WS, Andrews TJ, Conroy JP, von Caemmerer S (2005) Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme in C4 grasses. Plant Physiol 137:638–650

    Article  PubMed  CAS  Google Scholar 

  • Giussani L, Cota-Sánchez JH, Zuloaga F, Kellogg EA (2001) A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. Am J Bot 88:1993–2012

    Article  PubMed  CAS  Google Scholar 

  • Grass Phylogeny Working Group II (2012) New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol 193:304–312

    Article  Google Scholar 

  • Griffiths H (1989) Carbon dioxide concentrating mechanisms in relation to the evolution of CAM in vascular epiphytes. In: Luttge U (ed) Ecological studies 76: vascular plants as epiphytes. Springer-Verlag, Berlin, pp 42–86

    Chapter  Google Scholar 

  • Griffiths H, Weller G, Toy LMF, Dennis RJ (2013) You’re so vein: bundle sheath physiology, phylogeny and evolution in C3 and C4 plants. Plant Cell Environ 36:249–261

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez M, Gracen VE, Edwards GE (1974) Biochemical and cytological relationships in C4 plants. Planta 119:279–300

    Article  CAS  Google Scholar 

  • Hatch MD (1970) Chemical energy costs for CO2 fixation by plants with differing photosynthetic pathways. In: Prediction and measurement of photosynthetic productivity. Proc IBP/PP Tech Meet Třeboň 1969. Pudoc, Wageningen, pp 215–220

  • Hattersley PW, Watson L (1992) Diversification of photosynthesis. In: Chapman GP (ed) Grass evolution and domestication. Cambridge University Press, Cambridge, pp 38–116

    Google Scholar 

  • Hattersley PW, Wong SC, Perry S, Roksandic Z (1986) Comparative ultrastructure and gas-exchange characteristics of the C3–C4 intermediate Neurachne minor. Plant Cell Environ 9:217–233

    CAS  Google Scholar 

  • Hibberd JM, Covshoff S (2010) The regulation of gene expression required for C4 photosynthesis. Annu Rev Plant Biol 61:181–207

    Article  PubMed  CAS  Google Scholar 

  • Hibberd JM, Quick WP (2002) Characteristic of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature 415:451–454

    Article  PubMed  CAS  Google Scholar 

  • Hibberd JM, Sheehy JE, Langdale JA (2008) Using C4 photosynthesis to increase the yield of rice: rationale and feasibility. Curr Opin Plant Biol 11:228–231

    Article  PubMed  CAS  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–518

    Article  PubMed  CAS  Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Phil Trans R Soc B 361:903–915

    Article  PubMed  CAS  Google Scholar 

  • Hylton CM, Rawsthorne S, Smith AM, Jones A, Woolhouse HW (1988) Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3–C4 intermediate species. Planta 175:452–459

    Article  CAS  Google Scholar 

  • Ibrahim DG, Burke R, Ripley BS, Osborne CP (2009) A molecular phylogeny of the genus Alloteropsis (Panicoideae, Poaceae) suggests an evolutionary reversion from C4 to C3 photosynthesis. Ann Bot 103:127–136

    Article  PubMed  CAS  Google Scholar 

  • Ingram AL, Christin PA, Osborne CP (2011) Molecular phylogenies disprove a hypothesized C4 reversion in Eragrostis walteri (Poaceae). Ann Bot 107:321–325

    Article  PubMed  CAS  Google Scholar 

  • Jenkins CLD, Furbank RT, Hatch MD (1989) Mechanism of C4 photosynthesis: a model describing the inorganic carbon pool in bundle sheath cells. Plant Physiol 91:1372–1381

    Article  PubMed  CAS  Google Scholar 

  • Jordan DB, Ogren WL (1981) Species variation in the specificity of ribulose-biphosphate carboxylase-oxygenase. Nature 291:513–515

    Article  CAS  Google Scholar 

  • Kadereit G, Borsch T, Weising K, Freitag H (2003) Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int J Plant Sci 164:959–986

    Article  CAS  Google Scholar 

  • Kadereit G, Ackerly D, Pirie MD (2012) A broader model for C4 photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.). Proc R Soc B 279:3304–3311

    Article  PubMed  Google Scholar 

  • Kajala K, Brown NJ, Williams BP, Borrill P, Taylor LE, Hibberd JM (2012) Multiple Arabidopsis genes primed for recruitment into C4 photosynthesis. Plant J 69:47–56

    Article  PubMed  CAS  Google Scholar 

  • Kanai R, Edwards GE (1999) The biochemistry of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 49–87

    Chapter  Google Scholar 

  • Kasting JF (1987) Theoretical constraints on oxygen and carbon dioxide concentrations in the precambrian atmosphere. Precambrian Res 34:205–209

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926

    Article  PubMed  CAS  Google Scholar 

  • Kaufman AH, Xiao S (2003) High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature 425:279–282

    Article  PubMed  CAS  Google Scholar 

  • Kennedy RA, Laetsch WM (1974) Plant species intermediate for C3, C4 photosynthesis. Science 184:1087–1089

    Article  PubMed  CAS  Google Scholar 

  • Khoshravesh R, Hossein A, Sage TL, Nordenstam B, Sage RF (2012) Phylogeny and photosynthetic pathway distribution in Anticharis Endl. (Scrophulariaceae). J Exp Bot 63:5645–5658

    Article  PubMed  CAS  Google Scholar 

  • Ku SB, Edwards GE (1978) Oxygen inhibition of photosynthesis III. Temperature-dependence of quantum yield and its relation to O2/CO2 solubility ratio. Planta 140:1–6

    Article  CAS  Google Scholar 

  • Leegood RC (2008) Roles of the bundle sheath cells in leaves of C3 plants. J Exp Bot 59:1663–1673

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Tai YS, Liu DJ, Ku MSB (1993) Photosynthetic mechanisms of weeds in Taiwan. Aust J Plant Physiol 20:757–769

    Article  CAS  Google Scholar 

  • Losh JL, Young JN, Morel FMM (2013) Rubisco is a small fraction of total protein in marine phytoplankton. New Phytol 198:52–58

    Article  PubMed  CAS  Google Scholar 

  • Ludwig M (2013) Evolution of the C4 photosynthetic pathway: events at the cell and molecular levels. Photosynthesis Res. doi: 10.1007/s11120-013-9853-y

  • Ludwig LJ, Canvin DT (1971) The rate of photorespiration during photosynthesis and the relationship of the substrate of light respiration to the products in sunflower leaves. Plant Physiol 48:712–719

    Article  PubMed  CAS  Google Scholar 

  • Marshall DM, Muhaidat R, Brown NJ, Liu Z, Stanley S, Griffiths H, Sage RF, Hibberd JM (2007) Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C3 to C4 photosynthesis. Plant J 51:886–896

    Article  PubMed  CAS  Google Scholar 

  • Masumoto C, Miyazawa SI, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M (2009) Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci USA 107:5226–5231

    Article  Google Scholar 

  • McKown AD, Dengler NG (2007) Key innovations in the evolution of Kranz anatomy and C4 vein pattern in Flaveria (Asteraceae). Am J Bot 94:382–399

    Article  PubMed  Google Scholar 

  • McKown AD, Moncalvo JM, Dengler NG (2005) Phylogeny of Flaveria (Asteraceae) and inference of C4 photosynthesis evolution. Am J Bot 92:1911–1928

    Google Scholar 

  • Monson RK (2003) Gene duplication, neofunctionalization, and the evolution of C4 photosynthesis. Int J Plant Sci 164:S43–S54

    Article  CAS  Google Scholar 

  • Monteith JL (1977) Climate and efficiency of crop production in Britain. Phil Trans R Soc B 281:277–294

    Article  Google Scholar 

  • Muhaidat R, Sage RF, Dengler NG (2007) Diversity of Kranz anatomy and biochemistry in C4 eudicots. Am J Bot 94:362–381

    Article  PubMed  CAS  Google Scholar 

  • Muhaidat R, Sage TL, Frohlich MW, Dengler NG, Sage RF (2011) Characterization of C3–C4 intermediate species in the genus Heliotropium L. (Boraginaceae): anatomy, ultrastructure and enzyme activity. Plant Cell Environ 34:1723–1736

    Article  PubMed  CAS  Google Scholar 

  • Nilsson DE (2009) The evolution of eyes and visually guided behaviour. Phil Trans R Soc B 364:2833–2847

    Article  PubMed  Google Scholar 

  • Nisbet EG, Nisbet RER (2008) Methane, oxygen, photosynthesis, rubisco and the regulation of the air through time. Phil Trans R Soc B 363:2745–2754

    Article  PubMed  CAS  Google Scholar 

  • Nisbet EG, Grassineau NV, Howe CJ, Abell PI, Regelous M, Nisbet RER (2007) The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology 5:311–335

    Article  CAS  Google Scholar 

  • O’Brien TP, Carr DJ (1970) A suberized layer in the cell walls of the bundle sheath of grasses. Aust J Biol Sci 23:275–287

    Google Scholar 

  • Osborne CP, Beerling DJ (2006) Nature’s green revolution: the remarkable evolutionary rise of C4 plants. Phil Trans R Soc B 361:173–194

    Article  PubMed  CAS  Google Scholar 

  • Osborne CP, Freckleton RP (2009) Ecological selection pressures for C4 photosynthesis in the grasses. Proc R Soc B 276:1753–1760

    Article  PubMed  Google Scholar 

  • Osborne CP, Sack L (2012) Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Phil Trans R Soc B 367:583–600

    Article  PubMed  CAS  Google Scholar 

  • Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309:600–603

    Article  PubMed  CAS  Google Scholar 

  • Pearcy RW, Calkin HW (1983) Carbon dioxide exchange of C3 and C4 tree species in the understory of a Hawaiian forest. Oecologia 58:26–32

    Article  Google Scholar 

  • Pick TR, Brautigam A, Schluter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U, Weber APM (2011) Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. Plant Cell 23:4208–4220

    Article  PubMed  CAS  Google Scholar 

  • Prendergast HDV, Hattersley PW, Stone NE (1987) New structural/biochemical associations if leaf blades of C4 grasses (Poaceae). Aust J Plant Physiol 14:403–420

    Article  CAS  Google Scholar 

  • Pyankov VI, Black CC Jr, Artyusheva EG, Voznesenskaya EV, Ku MSB, Edwards GE (1999) Features of photosynthesis in Haloxylon species of Chenopodiaceae that are dominant plants in central Asian deserts. Plant Cell Physiol 40:125–134

    Article  CAS  Google Scholar 

  • Raven JA (2013) Rubisco: still the most abundant protein of Earth? New Phytol 198:1–3

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Cockell CS, De La Rocha CS (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil Trans R Soc B 363:2641–2650

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Phil Tran R Soc B 367:493–507

    Article  CAS  Google Scholar 

  • Rebeiz M, Jikomes N, Kassner VA, Carroll SB (2011) Evolutionary origin of a novel gene expression pattern through co-option of the latent activities of existing regulatory sequences. Proc Natl Acad Sci USA 108:10036–10043

    Article  PubMed  CAS  Google Scholar 

  • Renvoize SA (1982) A survey of leaf-blade anatomy in grasses III. Garnotieae. Kew Bull 37:497–500

    Article  Google Scholar 

  • Roalson EH (2008) C4 photosynthesis: differentiating causation and coincidence. Curr Biol 18:R167–R168

    Article  PubMed  CAS  Google Scholar 

  • Rothschild LJ (2008) The evolution of photosynthesis…again? Phil Trans R Soc B 363:2787–2801

    Article  PubMed  CAS  Google Scholar 

  • Royer DL, Berner RA, Park J (2007) Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature 446:530–532

    Article  PubMed  CAS  Google Scholar 

  • Sage RF (2001) Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biol 3:202–213

    Article  CAS  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370

    Article  CAS  Google Scholar 

  • Sage TL, Sage RF (2009) The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. Plant Cell Physiol 50:756–772

    Article  PubMed  CAS  Google Scholar 

  • Sage RF, Christin PA, Edwards EJ (2011) The C4 plant lineages of planet Earth. J Exp Bot 62:3155–3169

    Article  PubMed  CAS  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    Article  PubMed  CAS  Google Scholar 

  • Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:818–823

    Article  PubMed  CAS  Google Scholar 

  • Sinha NR, Kellogg EA (1996) Parallelism and diversity in multiple origins of C4 photosynthesis in the grass family. Am J Bot 83:1458–1470

    Article  Google Scholar 

  • Skillman JB (2008) Quantum yield variation across the three pathways of photosynthesis: not yet out of the dark. J Exp Bot 59:1647–1661

    Article  PubMed  CAS  Google Scholar 

  • Smith SA, Beaulieu JM, Donoghue MJ (2010) An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Natl Acad Sci USA 107:5897–5902

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner MA, Sytsma KJ, Qiu YL, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Juss WS, Donoghue MJ, Soltis PS (2011) Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot 98:704–730

    Article  PubMed  Google Scholar 

  • Soros CL, Dengler NG (2001) Ontogenic deviation and cell differentiation in photosynthetic tissues of C3 and C4 Cyperaceae. Am J Bot 88:992–1005

    Article  PubMed  CAS  Google Scholar 

  • Sudderth EA, Espinosa-Garcia FJ, Holbrook NM (2009) Geographic distributions and physiological characteristics of co-existing Flaveria species in south-central Mexico. Flora 204:89–98

    Article  Google Scholar 

  • Taylor SH, Ripley BS, Woodward FI, Osborne CP (2011) Drought limitation of photosynthesis differs between C3 and C4 grass species in a comparative experiment. Plant Cell Environ 34:65–75

    Article  PubMed  CAS  Google Scholar 

  • Taylor SH, Franks PJ, Hulme SP, Spriggs E, Christin PA, Edwards EJ, Woodward FI, Osborne CP (2012) Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytol 193:387–396

    Article  PubMed  CAS  Google Scholar 

  • Tcherkez GBB, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA 103:7246–7251

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu Y, Arakane Y, Kramer KJ, Denell RE (2009) Repeated co-options of exoskeleton formation during wing-to-elytron evolution in beetles. Curr Biol 19:2057–2065

    Article  PubMed  CAS  Google Scholar 

  • Ueno O, Sentoku N (2006) Comparison of leaf structure and photosynthetic characteristics of C3 and C4 Alloteropsis semialata subspecies. Plant Cell Environ 29:257–268

    Article  PubMed  CAS  Google Scholar 

  • van den Borre A, Watson L (1994) The infrageneric classification of Eragrostis (Poaceae). Taxon 43:383–422

    Article  Google Scholar 

  • Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA (2008) The age of the grasses and clusters of origins of C4 photosynthesis. Global Change Biol 14:2963–2977

    Article  Google Scholar 

  • Vogan PJ, Frohlich MW, Sage RF (2007) The functional significance of C3–C4 intermediate traits in Heliotiopium L. (Boraginaceae): gas exchange perspectives. Plant Cell Environ 30:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • von Caemmerer S, Furbank RT (2003) The C4 pathway: an efficient CO2 pump. Photosynth Res 77:191–207

    Article  Google Scholar 

  • von Caemmerer S, Quick PW, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336:1671–1672

    Article  CAS  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE (2001) Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414:543–546

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Gowik U, Tang H, Bowers JE, Westhoff P, Paterson AH (2009) Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol 10:R68

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Koshikawa S, Williams TM, Carroll SB (2010) Generation of a novel wing colour pattern by the Wingless morphogen. Nature 464:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Williams BP, Aubry S, Hibberd JM (2012) Molecular evolution of genes recruited into C4 photosynthesis. Trends Plant Sci 17:213–220

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, Walker RP, Chen ZH, Leegood RC (1999) Phosphoenolpyruvate carboxylase in involved in the decarboxylation of aspartate in the bundle sheath of maize. Plant Physiol 120:539–545

    Article  PubMed  CAS  Google Scholar 

  • Young JN, Rickaby REM, Kapralov MV, Filatov DA (2012) Adaptive signals in algal Rubisco reveal a history of ancient atmospheric carbon dioxide. Phil Trans R Soc B 367:483–492

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Marie Curie International Outgoing Fellowship 252569 to P-A C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal-Antoine Christin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christin, PA., Osborne, C.P. The recurrent assembly of C4 photosynthesis, an evolutionary tale. Photosynth Res 117, 163–175 (2013). https://doi.org/10.1007/s11120-013-9852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9852-z

Keywords

Navigation