Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Quantum private comparison protocol via 4D layered states and DQC model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on the four-dimensional layered quantum states and the delegating quantum computation (DQC) model, a new quantum private comparison (QPC) protocol is designed to compare private information between two participants with the help of a semi-honest third party (TP). The TP may misbehave on his own, though he enables to perform the protocol loyally. Benefiting from the properties of 4D layered quantum states in quantum secure communication, the QPC protocol performs the comparison of secrets better. The proposed QPC protocol based on a DQC scheme can be realized by the participants with insufficient capacity. The security of the proposed protocol is ensured by the usage of decoy photons and location obfuscation technique of sequences. The correctness of the proposed protocol is validated by simulations on the IBM’s qiskit. The performance of the protocol against the external and internal attacks is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science-FOCS 1982, pp. 160–164. IEEE, Los Alamitos (1982)

  2. Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    ADS  Google Scholar 

  3. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)

    MathSciNet  Google Scholar 

  4. Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65, 711–715 (2016)

    MathSciNet  ADS  Google Scholar 

  5. Ye, T.Y., Ji, Z.X.: Two-party quantum private comparison with five-qubit entangled states. Int. J. Theor. Phys. 56, 1517–1529 (2017)

    MathSciNet  Google Scholar 

  6. Xu, L., Zhao, Z.W.: Quantum private comparison protocol based on the entanglement swapping between state and W-Class state. Quantum Inf. Process. 16, 302 (2023)

    MathSciNet  ADS  Google Scholar 

  7. Li, C.Y., Chen, X.B., Li, H.J., et al.: Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Inf. Process. 18(5), 158 (2019)

    MathSciNet  ADS  Google Scholar 

  8. Ji, Z.X., Fan, P.R., Zhang, H.G., Wang, H.Z.: Greenberger-Horne-Zeilinger-based quantum private comparison protocol with bit-flipping. Phys. Scripta 96, 015103 (2021)

    ADS  Google Scholar 

  9. Ji, Z.X., Fan, P.R., Zhang, H.G., et al.: Several two-party protocols for quantum private comparison using entanglement and dense coding. Opt. Commun. 459, 124911 (2020)

    Google Scholar 

  10. Xu, Q.D., Chen, H.Y., Gong, L.H., Zhou, N.R.: Quantum private comparison protocol based on four-particle GHZ states. Int. J. Theor. Phys. 59(6), 1798–1806 (2020)

    MathSciNet  Google Scholar 

  11. Fan, P., Rahman, A.U., Ji, Z., Ji, X., Hao, Z., Zhang, H.: Two-party quantum private comparison based on eight-qubit entangled state. Mod. Phys. Lett. A 37(05), 2250026 (2022)

    MathSciNet  ADS  Google Scholar 

  12. Liu, C., Zhou, S., Gong, L.H., et al.: Quantum private comparison protocol based on 4D GHZ-like states. Quantum Inf. Process. 22(6), 255 (2023)

    MathSciNet  ADS  Google Scholar 

  13. Geng, M.J., Chen, Y., Xu, T.J., et al.: Single-state semiquantum private comparison based on Bell states. EPJ Quantum Technol. 9(1), 1–24 (2022)

    Google Scholar 

  14. Gong, L.H., Chen, Z.Y., Qin, L.G., Huang, J.H.: Robust multi-party semi-quantum private comparison protocols with decoherence-free states against collective noises. Adv. Quantum Technol. 6, 2300097 (2023)

    Google Scholar 

  15. Gong, L.H., Ye, Z.J., Liu, C., Zhou, S.: One-way semi-quantum private comparison protocol without pre-shared keys based on unitary operations. Laser Phys. Lett. 21(3), 035207 (2024)

    ADS  Google Scholar 

  16. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)

    ADS  Google Scholar 

  17. Lin, S., Sun, Y., Liu, X.F., Yao, Z.Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 12, 559–568 (2013)

    MathSciNet  ADS  Google Scholar 

  18. Guo, F.Z., Gao, F., Qin, S.J., Zhang, J., Wen, X.Y.: Quantum private comparison protocol based on entanglement swapping of d-level Bell states. Quantum Inf. Process. 12(8), 2793–2802 (2013)

    MathSciNet  ADS  Google Scholar 

  19. Li, L., Shi, R.H.: A novel and efficient quantum private comparison scheme. J. Korean Phys. Soc. 75, 15–21 (2019)

    ADS  Google Scholar 

  20. Wu, W.Q., Zhao, Y.X.: Quantum private comparison of size using d-level Bell states with a semi-honest third party. Quantum Inf. Process. 20(4), 1–18 (2021)

    MathSciNet  ADS  Google Scholar 

  21. Zhou, N.R., Xu, Q.D., Du, N.S., Gong, L.H.: Semi-quantum private comparison protocol of size relation with d-dimensional Bell states. Quantum Inf. Process. 20, 124 (2021)

    MathSciNet  Google Scholar 

  22. Wang, B., Liu, S.Q., Gong, L.H.: Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states. Chin. Phys. B 31(1), 010302 (2022)

    ADS  Google Scholar 

  23. Wang, B., Gong, L.H., Liu, S.Q.: Multi-party quantum private size comparison protocol with d-dimensional Bell states. Front. Phys. 10, 981376 (2022)

    Google Scholar 

  24. Ye, T.Y., Lian, J.Y.: A novel multi-party semiquantum private comparison protocol of size relationship with d-dimensional single-particle states. Physica A 611, 128424 (2023)

    Google Scholar 

  25. Lian, J.Y., Li, X., Ye, T.Y.: Multi-party semiquantum private comparison of size relationship with d-dimensional Bell states. EPJ Quantum Technol. 10, 10 (2023)

    Google Scholar 

  26. Lian, J.Y., Ye, T.Y.: Hybrid protocols for multi-party semiquantum private comparison, multiplication and summation without a pre-shared key based on d-dimensional single-particle states. EPJ Quantum Technol. 11, 17 (2024)

    Google Scholar 

  27. Malik, M., Erhard, M., Huber, M., et al.: Multi-photon entanglement in high dimensions. Nat. Photonics 10, 248–252 (2016)

    ADS  Google Scholar 

  28. Erhard, M., Malik, M., Krenn, M., Zeilinger, A.: Experimental greenberger–horne–zeilinger entanglement beyond qubits. Nat. Photon. 12, 759–764 (2018)

    ADS  Google Scholar 

  29. Puentes, G.: High-dimensional entanglement of photonic angular qudits. Front. Phys. 10, 868522 (2022)

    Google Scholar 

  30. Wang, F., Erhard, M., Babazadeh, A., Malik, M., Krenn, M., Zeilinger, A.: Generation of the complete four-dimensional Bell basis. Optica 4, 1462–1467 (2017)

    ADS  Google Scholar 

  31. Sit, A., Bouchard, F., Fickler, R., et al.: High-dimensional intracity quantum cryptography with structured photons. Optica 9, 1006–1010 (2017)

    ADS  Google Scholar 

  32. Hu, X.M., Guo, Y., Liu, B.H., et al.: Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4, eeat9304 (2018)

    ADS  Google Scholar 

  33. Hu, X.M., Xing, W.B., Zhang, C., et al.: Experimental creation of multi-photon high-dimensional layered quantum states. NPJ Quantum Inf. 6(1), 88 (2020)

    ADS  Google Scholar 

  34. Pivoluska, M., Huber, M., Malik, M.: Layered quantum key distribution. Phys. Rev. A 97(3), 032312 (2018)

    ADS  Google Scholar 

  35. Zhang, X.H., Yan, X.Y., Wang, Y.Q., et al.: Tripartite layered quantum key distribution scheme with a symmetrical key structure. Int. J. Theor. Phys. 59(2), 562–573 (2020)

    Google Scholar 

  36. Yan, Y.F., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Front. Phys. 16(1), 11501 (2021)

    ADS  Google Scholar 

  37. Hu, W., Zhou, R.G., Luo, J.: Semi-quantum secret sharing in high-dimensional quantum system using product states. Chin. J. Phys. 77, 1701–1712 (2022)

    MathSciNet  Google Scholar 

  38. Gianni, J., Qu, Z.: New quantum private comparison using hyperentangled GHZ state. J. Quantum Comput. 3(2), 45 (2021)

    Google Scholar 

  39. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation, pp. 169–180 (1978)

  40. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178. ACM, New York (2009)

  41. Broadbent, A.: Delegating private quantum computations. Can. J. Phys. 93(9), 941–946 (2015)

    ADS  Google Scholar 

  42. Li, Q., Chan, W.H., Zhang, S.: Semiquantum key distribution with secure delegated quantum computation. Sci. Rep. 6, 19898 (2016)

    ADS  Google Scholar 

  43. Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)

    MathSciNet  Google Scholar 

  44. Lin, L., Xiao, M., Song, X.: Authenticated semiquantum dialogue with secure delegated quantum computation over a collective noise channel. Quantum Inf. Process. 17, 342 (2018)

    MathSciNet  ADS  Google Scholar 

  45. Shan, R.T., Chen, X., Yuan, K.G.: Multi-party blind quantum computation protocol with mutual authentication in network. Sci. China Inf. Sci. 64(6), 162302 (2021)

    MathSciNet  Google Scholar 

  46. Wang, H.B., Pan, D.M., Liu, W.J.: Quantum private comparison based on delegating quantum computation. In: ICCCS 2018. LNICS, vol. 11065, pp. 660–669. Springer, Cham (2018)

    Google Scholar 

  47. Zhang, J.W., Xu, G., Chen, X.B., Chang, Y., Dong, Z.C.: Improved multiparty quantum private comparison based on quantum homomorphic encryption. Physica A 610, 128397 (2023)

    MathSciNet  Google Scholar 

  48. Gong, L.H., Pei, J.J., Zhang, T.F., Zhou, N.R.: Quantum convolutional neural network based on variational quantum circuits. Opt. Commun. 550, 129993 (2024)

    Google Scholar 

  49. IBM Quantum experience. https://quantum-computing.ibm.com/composer/.

  50. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 62161025), the Top Double 1000 Talent Programme of Jiangxi Province (Grant No. JXSQ2019201055), and the Innovation Special Foundation of Graduate Student of Jiangxi Province (Grant No. YC2022-S122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Ying Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhou, S., Gong, LH. et al. Quantum private comparison protocol via 4D layered states and DQC model. Quantum Inf Process 23, 156 (2024). https://doi.org/10.1007/s11128-024-04368-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04368-z

Keywords

Navigation