Abstract
In this paper, we present a construction of quantum error-correcting codes (QECCs) codes and entanglement-assisted quantum error-correcting (EAQECCs) using Euclidean hulls and sums of cyclic codes of length n over a family of ring \(R_s = {\mathbb {F}}_q+v_1{\mathbb {F}}_q+v_2{\mathbb {F}}_q+\cdots +v_s{\mathbb {F}}_q\), where q is an odd prime power and \(v_i ^2=v_i\), \(v_iv_j=v_jv_i=0\), for \(i,j= 1,2,3,\cdots ,s\) and \(i \ne j\). The study delves into various aspects of this construction. We explore the generator polynomials, the dimension of both Euclidean hulls and the sums of cyclic codes over the ring \(R_s\). Further, we determine several new QECCs and EAQECCs. This paper claims that our obtained codes have improved parameters (e.g. higher minimum distance or greater dimension) than the existing quantum codes. Moreover, we present some detailed examples that effectively illustrate our findings.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ashraf, M., Mohammad, G.: Construction of quantum codes from cyclic codes over \({\mathbb{F} }_p+v{\mathbb{F} }_p\). Int. J. Inf. Coding Theory 3(2), 137–144 (2015)
Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \({\mathbb{F} }_q+u{\mathbb{F} }_q+v{\mathbb{F} }_q+uv{\mathbb{F} }_q\). Quantum Inf. Process. 15(10), 4089–4098 (2016)
Ashraf, M., Mohammad, G.: Quantum codes over \({\mathbb{F} }_p\) from cyclic codes over \({\mathbb{F} }_p[u, v]/\langle u^2-1, v^3-v, uv-vu\rangle \). Cryptogr. Commun. 11, 325–335 (2019)
Bag, T., Dertli, A., Cengellenmis, Y., Upadhyay, A.K.: Application of constacyclic codes over the semi local ring \({\mathbb{F} }_{p^m}+v{\mathbb{F} }_{p^m}\). Indian J. Pure Appl. Math. 51(1), 265–275 (2020)
Bag, T., Upadhyay, A.K., Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over ring \({\mathbb{F} }_p[u]/\langle u^3-u\rangle \). Asian-Eur. J. Math. 13(1), 1–10 (2020)
Brun, T.A., Devetak, I., Hsieh, H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)
Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error-correction via codes GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)
Cao, M.: MDS codes with Galois hulls of arbitrary dimensions and the related entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 67(12), 7964–7984 (2021)
Dai, Y., Liu, X.: QSCs from the Euclidean sums of cyclic codes over finite rings. Quantum Inf. Process. 21(8), 1–14 (2022)
Dinh, H.Q., Bag, T., Pathak, S., Upadhyay, A.K., Chinnakum, W.: Quantum codes obtained from constacyclic codes over a family of finite rings \({\mathbb{F} }_p[u_1, u_2,\dots, u_s]\). IEEE Access. 8, 194082–194091 (2020)
Edel, Y.: Some good quantum twisted codes, accessed on Jul., [Online] Available: https://www.mathi.uniheidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html (2020)
Faldy, T., Djoko, S.: LCD codes over \({\mathbb{F}}_{q} + v{\mathbb{F} }_{q} + v^{2}{\mathbb{F}}_{q} + \ldots + v^{m-1}{\mathbb{F}}_{q}\), Advances in Social Science, Education and Humanities Research 550 (2020)
Fan, J., Chen, H., Xu, J.: Construction of q-ary entanglement-assisted quantum MDS codes with minimum distance greater than q + 1. Quantum Inf. Comput. 16, 0423–0434 (2016)
Fang, W., Fu, F.: Some new constructions of quantum MDS codes. IEEE Trans. Inf. Theory 65(12), 7840–7847 (2019)
Fang, W., Fu, F.W., Li, L., Zhu, S.: Euclidean and Hermitian Hulls of MDS codes and their applications to EAQECCs. IEEE Trans. Inf. Theory 60(6), 3527–3537 (2020)
Fang, X., Jin, R., Luo, J., Ma, W.: New Galois hulls of GRS codes and application to EAQECCs. Cryptogr. Commun. 14(1), 145–159 (2022)
Grassl, M., Beth, T., Röttler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 757–775 (2004)
Gao, Y., Gao, J., Fu, F.: Quantum codes from cyclic codes over the ring \({\mathbb{F} }_q+v_1{\mathbb{F} }_q+\cdots +v_r{\mathbb{F} }_q\). AAECC 30, 161–174 (2019)
Guenda, K., Gulliver, T.A., Jitman, S., Thipworawimon, S.: Linear \(l\)-intersection pairs of codes and their applications. Des. Codes Cryptogr. 88, 133–152 (2020)
Hamada, M.: Concatenated quantum codes constructible in polynomial time: Efficient decoding and error correction. IEEE Trans. Inf. Theory 54, 5689–5704 (2008)
Hu, P., Liu, H.: Three classes of new EAQEC MDS codes. Quantum Inf. Process. 20(3), 1–19 (2021)
Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)
Islam H., Horlemann, A. L.: Galois Hull Dimensions of Gabidulin Codes, IEEE Information Theory Workshop (ITW), pp. 42-46 (2023)
Islam, H., Prakash, O.: New quantum codes from cyclic codes over \({\mathbb{F} }_p[u, v, w]/\langle u^2-1, v^2-1, w^2-1, uv-uv, vw-wv, wu-uw\rangle \). J. Appl. Math. Comput. (2019). https://doi.org/10.1007/s12190-018-01230-1
Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)
Liu, H., Hu, P.: New quantum codes from two linear codes. Quantum Inf. Process. 19(3), 1–13 (2020)
Liu, X., Liu, H.: Quantum codes from linear codes over finite chain rings. Quantum Inf. Process. 16, 1–18 (2017)
Lio, H., Liu, X.: New EAQEC codes from cyclic codes over \({\mathbb{F} }_q+u{\mathbb{F} }_q\). Quantum Inf. Process. 19, 1–16 (2020)
Luo, L., Ma, Z., Wei, Z., Leng, R.: Non-binary entanglement-assisted quantum stabilizer codes. Sci. China Inf. Sci. 60, 11–14 (2017)
Ling, S., Xing, C.P.: Coding Theory - A First Course. Cambridge University Press, Cambridge (2004)
Liu, X., Yu, L., Hu, P.: New entanglement-assisted quantum codes from k-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995)
Sok, L., Qian, G.: Linear codes with arbitrary dimensional hull and their applications to EAQECCs. Quantum Inf. Process. 21, 1–30 (2022)
Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 1–4 (2008)
Yao, T., Shi, M., Sole, P.: Skew cyclic codes over \({\mathbb{F} }_q+u{\mathbb{F} }_q+v{\mathbb{F} }_q+uv{\mathbb{F} }_q\). J. Algebra Comb. Discrete Appl. 2(3), 163–168 (2015)
Zhang, X.: QEC and EAQEC codes from cyclic codes over non-chain rings. Quan. Inf. Process. 21(12), 1–15 (2022)
Acknowledgements
The authors are grateful for the considerate and helpful comments given by the anonymous reviewers. These comments have played a crucial role in improving the quality of the manuscript. The first, third and fourth authors are, respectively, their gratitude to the DST-INSPIRE, the University Grant Commission (UGC), Govt. of India and NBHM, Department of Atomic Energy, for their financial support. Also, AKU expresses gratitude to SERB-DST, India, for their financial assistance via project No. MTR/2020/000006 within the MATRICS framework. The authors would like to express their gratitude to Dr. Devendra Kumar Mishra, Associate Professor, Department of Physics, BHU for dedicating his time to the discussion on entangled bits and their importance in quantum physics.
Author information
Authors and Affiliations
Contributions
OPP and SP wrote the main manuscript text. All authors reviewed the manuscript and prepared accordingly.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Pandey, O.P., Pathak, S., Shukla, A.K. et al. A study of QECCs and EAQECCs construction from cyclic codes over the ring \({\mathbb {F}}_q+v_1{\mathbb {F}}_q+v_2{\mathbb {F}}_q+\cdots +v_s{\mathbb {F}}_q\). Quantum Inf Process 23, 31 (2024). https://doi.org/10.1007/s11128-023-04240-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-04240-6