Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A study of QECCs and EAQECCs construction from cyclic codes over the ring \({\mathbb {F}}_q+v_1{\mathbb {F}}_q+v_2{\mathbb {F}}_q+\cdots +v_s{\mathbb {F}}_q\)

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a construction of quantum error-correcting codes (QECCs) codes and entanglement-assisted quantum error-correcting (EAQECCs) using Euclidean hulls and sums of cyclic codes of length n over a family of ring \(R_s = {\mathbb {F}}_q+v_1{\mathbb {F}}_q+v_2{\mathbb {F}}_q+\cdots +v_s{\mathbb {F}}_q\), where q is an odd prime power and \(v_i ^2=v_i\), \(v_iv_j=v_jv_i=0\), for \(i,j= 1,2,3,\cdots ,s\) and \(i \ne j\). The study delves into various aspects of this construction. We explore the generator polynomials, the dimension of both Euclidean hulls and the sums of cyclic codes over the ring \(R_s\). Further, we determine several new QECCs and EAQECCs. This paper claims that our obtained codes have improved parameters (e.g. higher minimum distance or greater dimension) than the existing quantum codes. Moreover, we present some detailed examples that effectively illustrate our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ashraf, M., Mohammad, G.: Construction of quantum codes from cyclic codes over \({\mathbb{F} }_p+v{\mathbb{F} }_p\). Int. J. Inf. Coding Theory 3(2), 137–144 (2015)

    MathSciNet  Google Scholar 

  2. Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \({\mathbb{F} }_q+u{\mathbb{F} }_q+v{\mathbb{F} }_q+uv{\mathbb{F} }_q\). Quantum Inf. Process. 15(10), 4089–4098 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ashraf, M., Mohammad, G.: Quantum codes over \({\mathbb{F} }_p\) from cyclic codes over \({\mathbb{F} }_p[u, v]/\langle u^2-1, v^3-v, uv-vu\rangle \). Cryptogr. Commun. 11, 325–335 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bag, T., Dertli, A., Cengellenmis, Y., Upadhyay, A.K.: Application of constacyclic codes over the semi local ring \({\mathbb{F} }_{p^m}+v{\mathbb{F} }_{p^m}\). Indian J. Pure Appl. Math. 51(1), 265–275 (2020)

    Article  MathSciNet  Google Scholar 

  5. Bag, T., Upadhyay, A.K., Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over ring \({\mathbb{F} }_p[u]/\langle u^3-u\rangle \). Asian-Eur. J. Math. 13(1), 1–10 (2020)

    Google Scholar 

  6. Brun, T.A., Devetak, I., Hsieh, H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  7. Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error-correction via codes GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  8. Cao, M.: MDS codes with Galois hulls of arbitrary dimensions and the related entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 67(12), 7964–7984 (2021)

    Article  MathSciNet  Google Scholar 

  9. Dai, Y., Liu, X.: QSCs from the Euclidean sums of cyclic codes over finite rings. Quantum Inf. Process. 21(8), 1–14 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dinh, H.Q., Bag, T., Pathak, S., Upadhyay, A.K., Chinnakum, W.: Quantum codes obtained from constacyclic codes over a family of finite rings \({\mathbb{F} }_p[u_1, u_2,\dots, u_s]\). IEEE Access. 8, 194082–194091 (2020)

    Article  Google Scholar 

  11. Edel, Y.: Some good quantum twisted codes, accessed on Jul., [Online] Available: https://www.mathi.uniheidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html (2020)

  12. Faldy, T., Djoko, S.: LCD codes over \({\mathbb{F}}_{q} + v{\mathbb{F} }_{q} + v^{2}{\mathbb{F}}_{q} + \ldots + v^{m-1}{\mathbb{F}}_{q}\), Advances in Social Science, Education and Humanities Research 550 (2020)

  13. Fan, J., Chen, H., Xu, J.: Construction of q-ary entanglement-assisted quantum MDS codes with minimum distance greater than q + 1. Quantum Inf. Comput. 16, 0423–0434 (2016)

    MathSciNet  Google Scholar 

  14. Fang, W., Fu, F.: Some new constructions of quantum MDS codes. IEEE Trans. Inf. Theory 65(12), 7840–7847 (2019)

    Article  MathSciNet  Google Scholar 

  15. Fang, W., Fu, F.W., Li, L., Zhu, S.: Euclidean and Hermitian Hulls of MDS codes and their applications to EAQECCs. IEEE Trans. Inf. Theory 60(6), 3527–3537 (2020)

    Article  MathSciNet  Google Scholar 

  16. Fang, X., Jin, R., Luo, J., Ma, W.: New Galois hulls of GRS codes and application to EAQECCs. Cryptogr. Commun. 14(1), 145–159 (2022)

    Article  MathSciNet  Google Scholar 

  17. Grassl, M., Beth, T., Röttler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 757–775 (2004)

    Article  Google Scholar 

  18. Gao, Y., Gao, J., Fu, F.: Quantum codes from cyclic codes over the ring \({\mathbb{F} }_q+v_1{\mathbb{F} }_q+\cdots +v_r{\mathbb{F} }_q\). AAECC 30, 161–174 (2019)

    Article  Google Scholar 

  19. Guenda, K., Gulliver, T.A., Jitman, S., Thipworawimon, S.: Linear \(l\)-intersection pairs of codes and their applications. Des. Codes Cryptogr. 88, 133–152 (2020)

    Article  MathSciNet  Google Scholar 

  20. Hamada, M.: Concatenated quantum codes constructible in polynomial time: Efficient decoding and error correction. IEEE Trans. Inf. Theory 54, 5689–5704 (2008)

    Article  MathSciNet  Google Scholar 

  21. Hu, P., Liu, H.: Three classes of new EAQEC MDS codes. Quantum Inf. Process. 20(3), 1–19 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  22. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  23. Islam H., Horlemann, A. L.: Galois Hull Dimensions of Gabidulin Codes, IEEE Information Theory Workshop (ITW), pp. 42-46 (2023)

  24. Islam, H., Prakash, O.: New quantum codes from cyclic codes over \({\mathbb{F} }_p[u, v, w]/\langle u^2-1, v^2-1, w^2-1, uv-uv, vw-wv, wu-uw\rangle \). J. Appl. Math. Comput. (2019). https://doi.org/10.1007/s12190-018-01230-1

    Article  Google Scholar 

  25. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

    Article  MathSciNet  Google Scholar 

  26. Liu, H., Hu, P.: New quantum codes from two linear codes. Quantum Inf. Process. 19(3), 1–13 (2020)

    Article  MathSciNet  Google Scholar 

  27. Liu, X., Liu, H.: Quantum codes from linear codes over finite chain rings. Quantum Inf. Process. 16, 1–18 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Lio, H., Liu, X.: New EAQEC codes from cyclic codes over \({\mathbb{F} }_q+u{\mathbb{F} }_q\). Quantum Inf. Process. 19, 1–16 (2020)

    Google Scholar 

  29. Luo, L., Ma, Z., Wei, Z., Leng, R.: Non-binary entanglement-assisted quantum stabilizer codes. Sci. China Inf. Sci. 60, 11–14 (2017)

    Article  Google Scholar 

  30. Ling, S., Xing, C.P.: Coding Theory - A First Course. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  31. Liu, X., Yu, L., Hu, P.: New entanglement-assisted quantum codes from k-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019)

    Article  MathSciNet  Google Scholar 

  32. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995)

    Article  ADS  Google Scholar 

  33. Sok, L., Qian, G.: Linear codes with arbitrary dimensional hull and their applications to EAQECCs. Quantum Inf. Process. 21, 1–30 (2022)

    Article  MathSciNet  Google Scholar 

  34. Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 1–4 (2008)

    Article  Google Scholar 

  35. Yao, T., Shi, M., Sole, P.: Skew cyclic codes over \({\mathbb{F} }_q+u{\mathbb{F} }_q+v{\mathbb{F} }_q+uv{\mathbb{F} }_q\). J. Algebra Comb. Discrete Appl. 2(3), 163–168 (2015)

    MathSciNet  Google Scholar 

  36. Zhang, X.: QEC and EAQEC codes from cyclic codes over non-chain rings. Quan. Inf. Process. 21(12), 1–15 (2022)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the considerate and helpful comments given by the anonymous reviewers. These comments have played a crucial role in improving the quality of the manuscript. The first, third and fourth authors are, respectively, their gratitude to the DST-INSPIRE, the University Grant Commission (UGC), Govt. of India and NBHM, Department of Atomic Energy, for their financial support. Also, AKU expresses gratitude to SERB-DST, India, for their financial assistance via project No. MTR/2020/000006 within the MATRICS framework. The authors would like to express their gratitude to Dr. Devendra Kumar Mishra, Associate Professor, Department of Physics, BHU for dedicating his time to the discussion on entangled bits and their importance in quantum physics.

Author information

Authors and Affiliations

Authors

Contributions

OPP and SP wrote the main manuscript text. All authors reviewed the manuscript and prepared accordingly.

Corresponding author

Correspondence to Sachin Pathak.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, O.P., Pathak, S., Shukla, A.K. et al. A study of QECCs and EAQECCs construction from cyclic codes over the ring \({\mathbb {F}}_q+v_1{\mathbb {F}}_q+v_2{\mathbb {F}}_q+\cdots +v_s{\mathbb {F}}_q\). Quantum Inf Process 23, 31 (2024). https://doi.org/10.1007/s11128-023-04240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04240-6

Keywords

Navigation