Abstract
Ray tracing algorithm is a category of rendering algorithms that calculate pixel colors by simulating light rays in parallel. The quantum supersampling has achieved a quadratic speedup over classical Monte Carlo method, but its output image contains many detached abnormal noisy dots. In this paper, we improve quantum supersampling by replacing the QFT-based phase estimation in quantum supersampling with a robust quantum counting scheme. We do simulation experiments to show that the quantum ray tracing with improved quantum supersampling does perform better than classical path tracing algorithm as well as the original form of quantum supersampling.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability statement
The data that support the findings of this study available from the corresponding author upon reasonable request.
References
Whitted, T.: An improved illumination model for shaded display. Commun. ACM 23, 343–349 (1980). https://doi.org/10.1145/358876.358882
Cook, R.L., Porter, T., Carpenter, L.: Distributed ray tracing. Comput. Graph. 18, 137–145 (1984). https://doi.org/10.1145/800031.808590
Kajiya, J.T.: The rendering equation. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH vol. 20, 143–150 (1986). https://doi.org/10.1145/15922.15902
Haines, E., Akenine-Möller, T.: Ray Tracing Gems: High-Quality and Real-Time Rendering with DXR and Other APIs. Apress, New York (2019)
Akenine-Mller, T., Haines, E., Hoffman, N.: Real-Time Rendering, 4th edn. A. K. Peters Ltd, Natick (2018)
Zeng, Z., Liu, S., Yang, J., Wang, L., Yan, L.-Q.: Temporally reliable motion vectors for real-time ray tracing. Comput. Graph. Forum 40(2), 79–90 (2021). https://doi.org/10.1111/cgf.142616
Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C.R.A., Burgess, J., Liu, S., Dachsbacher, C., Lefohn, A., Salvi, M.: Spatiotemporal variance-guided filtering: Real-time reconstruction for path-traced global illumination. In: Proceedings of High Performance Graphics. HPG ’17. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3105762.3105770
Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Am. Assoc. Phys. Teach. 70, 558–559 (2002)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997). https://doi.org/10.1103/PhysRevLett.79.325
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997). https://doi.org/10.1137/S0097539795293172
Lanzagorta, M., Uhlmann, J.K.: Hybrid quantum-classical computing with applications to computer graphics. ACM SIGGRAPH 2005 Courses, SIGGRAPH 2005 (2005). https://doi.org/10.1145/1198555.1198723
Caraiman, S.: Quantum computer graphics algorithms. Buletinul Institutului Politehnic din Iasi, Sectia Automatica si Calculatoare 62(4), 21–38 (2012)
Johnston, E.R.: Quantum supersampling. ACM SIGGRAPH 2016 Talks (2016). https://doi.org/10.1145/2897839
Shimada, N.H., Hachisuka, T.: Quantum coin method for numerical integration. Comput. Graph. Forum 39, 243–257 (2020). https://doi.org/10.1111/cgf.14015
Abrams, D.S., Williams, C.P.: Fast quantum algorithms for numerical integrals and stochastic processes. arXiv (1999)
Santos, L.P., Bashford-Rogers, T., Barbosa, J., Navrátil, P.: Towards quantum ray tracing (2022). https://doi.org/10.48550/arxiv.2204.12797
Durr, C., Hoyer, P.: A quantum algorithm for finding the minimum. arXiv (1996)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100(16), 160501 (2008)
Suzuki, Y., Uno, S., Raymond, R., Tanaka, T., Onodera, T., Yamamoto, N.: Amplitude estimation without phase estimation. Quantum Inf. Process. (2019). https://doi.org/10.1007/s11128-019-2565-2
Lu, X., Lin, H.: Unbiased quantum phase estimation. arXiv preprint arXiv:2210.00231 (2022)
Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982). https://doi.org/10.1007/BF02650179
Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16(6), 507–531 (1986). https://doi.org/10.1007/BF01886518
Takahashi, Y., Tani, S., Kunihiro, N.: Quantum addition circuits and unbounded fan-out. Quantum Inf. Comput. 10, 872–890 (2009). https://doi.org/10.26421/qic10.9-10-12
Brassard, G., Hoyer, P., Tapp, A.: Quantum counting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 1443 LNCS, pp. 820–831 (1998). https://doi.org/10.1007/BFb0055105
Kitaev, A.Y.: Quantum measurements and the abelian stabilizer problem. arXiv: https://arxiv.org/abs/quant-ph/9511026v1 (1995)
Mosca, M., Ekert, A.: The hidden subgroup problem and eigenvalue estimation on a quantum computer. In: NASA International Conference on Quantum Computing and Quantum Communications, pp. 174–188 (1998). Springer
Dobšíček, M., Johansson, G., Shumeiko, V., Wendin, G.: Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: A two-qubit benchmark. Phys. Rev. A 76(3), 030306 (2007)
Dobšíček, M.: Quantum computing, phase estimation and applications. arXiv (2008). https://doi.org/10.48550/arxiv.0803.0909
Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)
Svore, K.M., Hastings, M.B., Freedman, M.: Faster phase estimation. Quantum Inf. Comput. 14, 306–328 (2013). https://doi.org/10.26421/qic14.3-4-7
Wiebe, N., Granade, C.: Efficient Bayesian phase estimation. Phys. Rev. Lett. 117, 010503 (2016). https://doi.org/10.1103/PHYSREVLETT.117.010503/FIGURES/5/MEDIUM
Wie, C.R.: Simpler quantum counting. Quantum Inf. Comput. (2019). https://doi.org/10.26421/QIC19.11-12
Aaronson, S., Rall, P.: Quantum approximate counting, simplified. In: Symposium on simplicity in algorithms, pp. 24–32 (2020). SIAM
Grinko, D., Gacon, J., Zoufal, C., Woerner, S.: Iterative quantum amplitude estimation. NPJ Quantum Inf. 7, 1–6 (2021). https://doi.org/10.1038/s41534-021-00379-1
Plekhanov, K., Rosenkranz, M., Fiorentini, M., Lubasch, M.: Variational quantum amplitude estimation. Quantum 6, 670 (2022). https://doi.org/10.22331/q-2022-03-17-670
Arrighetti, W.: The academy color encoding system (aces): a professional color-management framework for production, post-production and archival of still and motion pictures. J. Imaging 3(4), 40 (2017)
Fuchs, H., Kedem, Z.M., Naylor, B.F.: On visible surface generation by a priori tree structures. ACM SIGGRAPH Comput. Graph. 14, 124–133 (1980). https://doi.org/10.1145/965105.807481
Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18, 509–517 (1975). https://doi.org/10.1145/361002.361007
Hapala, M., Havran, V.: Review: Kd-tree traversal algorithms for ray tracing. Comput. Graph. Forum 30, 199–213 (2011). https://doi.org/10.1111/j.1467-8659.2010.01844.x
Clark, J.H.: Hierarchical geometric models for visible surface algorithms. Commun. ACM 19, 547–554 (1976). https://doi.org/10.1145/360349.360354
Acknowledgements
This work is supported by the National Natural Science Foundation of China under Grant nos. 62272406, 61872316, and the National Key Research and Development Plan of China under Grant no. 2020YFB1708900.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors report no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lu, X., Lin, H. Improved quantum supersampling for quantum ray tracing. Quantum Inf Process 22, 359 (2023). https://doi.org/10.1007/s11128-023-04114-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-04114-x