Abstract
We investigate the decrease and recovery of quantum security in terms of the non-distinguishability of UPBs. For the decrease, we show that any system merge of an existing four-qubit UPB of size ten is no longer a UPB. For the recovery, we append a suitable \(4\times 2\times 2\) product state to the four-qubit UPB, and it turns out to be a family of \(4\times 2\times 2\) UPBs of size eleven. We further show that the merge of some two systems in the four-qubit UPB results still in an indistinguishable set of product states and show a more robust quantum security against the intruder. To apply the quantum security for more multipartite systems, we construct a family of seven-qubit UPB of size 13. Our result presents the latest progress on the construction of multiqubit UPBs.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
All data, models, and code generated or used during the study appear in the submitted article.
References
Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Tal, M., Eric, R., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070–1091 (1999)
Alon, N., Lovász, L.: Unextendible product bases. J. Comb. Theory Ser. A 95(1), 169–179 (2001)
DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys. 238, 379–410 (2003)
Feng, K.: Unextendible product bases and \(1\)-factorization of complete graphs. Discret. Appl. Math. 154, 942–949 (2006)
Chen, J., Johnston, N.: The minimum size of unextendible product bases in the bipartite case (and some multipartite cases). Commun. Math. Phys. 333(1), 351–365 (2013)
Augusiak, R., Stasinska, J., Hadley, C., Korbicz, J.K., Lewenstein, M., Acin, A.: Bell inequalities with no quantum violation and unextendable product bases. Phys. Rev. Lett. 107, 070401 (2011)
Chen, J., Chen, L., Zeng, B.: Unextendible product basis for fermionic systems. J. Math. Phys. 55, 8 (2014)
Shi, F., Mengyao, H., Chen, L., Zhang, X.: Strong quantum nonlocality with entanglement. Phys. Rev. A 102, 4 (2020)
Shi, F., Li, M.S., Hu, M., Chen, L., Yung, M.H., Wang, Y.L., Zhang, X.: Strongly nonlocal unextendible product bases do exist. Quantum 6, 619 (2022)
Shi, F., Li, M.-S., Chen, L., Zhang, X.: Strong quantum nonlocality for unextendible product bases in heterogeneous systems. J. Phys. A Math. Theor. 55(1), 015305 (2021)
Shi, F., Ye, Z., Chen, L., Zhang, X.: Strong quantum nonlocality in n -partite systems. Phys. Rev. A 105, 22209 (2022)
Shi, F., Zhang, X., Chen, L.: Unextendible product bases from tile structures and their local entanglement-assisted distinguishability. Phys. Rev. A 101(6), 22 (2020)
Mengyao, H., Chen, L., Shi, F., Zhang, X., Tura, J.: Unextendible product operator basis. J. Math. Phys. 63(12), 122202 (2022)
Chen, L., Chu, D., Qian, L., Shen, Y.: Separability of completely symmetric states in multipartite system. Phys. Rev. A 99, 3 (2019)
Qian, L., Chen, L., Chu, D.: Separability of symmetric states and vandermonde decomposition. N. J. Phys. 22(3), 033019 (2020)
Qian, L., Chen, L., Chu, D., Shen, Y.: A matrix inequality for entanglement distillation problem. Linear Algeb. Appl. 616, 18 (2021)
Shi, F., Zhang, X., Chen, L.: Unextendible product bases from tile structures and their local entanglement-assisted distinguishability. Phys. Rev. A 101, 6 (2020)
Reed, M.D., Dicarlo, L., Nigg, S.E., Sun, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482(7385), 382–385 (2012)
Dicarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467(7315), 574–578 (2010)
Bravyi, S.B.: Unextendible product bases and locally unconvertible bound entangled states. Quant. Inf. Process. 3(6), 309–329 (2004)
Johnston, N.: The Minimum Size of Qubit Unextendible Product Bases. arXiv preprint arXiv:1302.1604 (2013)
Johnston, N.: The structure of qubit unextendible product bases. J. Phys. A Math. Theor. 47, 47 (2014)
Wang, K., Chen, L.: The construction of 7-qubit unextendible product bases of size ten. Quant. Inf. Process. 19(6), 1–17 (2020)
Chen, L., Djokovic, D.Z.: Nonexistence of n -qubit unextendible product bases of size \(2^n-5\). Quant. Inf. Process. 17(2), 24 (2018)
Sun, Y., Chen, L.: The Construction and Local Distinguishability of Multiqubit Unextendible Product Bases (2021)
Wang, K., Chen, L., Shen, Y., Sun, Y., Zhao, L.-J.: Constructing 2 x 2 x 4 and 4 x 4 unextendible product bases and positive-partial-transpose entangled states. Linear Mult Algebra 69(1), 131–146 (2021)
Wang, K., Chen, L., Zhao, L., Guo, Y.: \(4\times 4\) unextendible product basis and genuinely entangled space. Quant. Inf. Process. 18, 1–28 (2019)
Zhang, T., Chen, L.: Constructing Unextendible Product Bases from Multiqubit Ones (2022)
Chen, Lin, Djokovic, Dragomir Z.: Multiqubit upb: The method of formally orthogonal matrices. J. Phys. A Math. Theor. 51(26), 265302 (2018)
Chen, L., Djokovic, D.Z.: Orthogonal product bases of four qubits. J. Phys. A Math. Theor. 50(39), 395301 (2017)
Chen, L., Djokovic, D.Z.: The unextendible product bases of four qubits: Hasse diagrams. Quant. Inf. Process. 18(5), 1–17 (2019)
Acknowledgements
We thank Mengfan Liang for helpful discussion. LC was supported by the NNSF of China (Grant No. 11871089), and the Fundamental Research Funds for the Central Universities (Grant Nos. KG12040501, ZG216S1810 and ZG226S18C1).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, L., Yuan, Y., Yan, J. et al. Multipartite unextendible product bases and quantum security. Quantum Inf Process 22, 259 (2023). https://doi.org/10.1007/s11128-023-04014-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-04014-0