Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Strong generalization in quantum neural networks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Generalization is an important feature of neural networks (Nns) as it indicates their ability to predict new and unknown data. However, classical Nns face the challenge of overcoming overfitting in applications due to their nonlinear characteristics, which represents poor generalization. By combining quantum computing with Nns, quantum neural networks (Qnns) have more potential than classical Nns. In this work, we study the generalization of Qnns and compare it with classical Nns. We prove that Qnns have a generalization error bound and propose its theoretical value. We also show that Qnns perform almost the same on the training dataset and test dataset without the overfitting phenomenon. To validate our proposal, we simulate three Qnn models on two public datasets and compare them with a traditional network model. The results demonstrate that Qnns have ideal generalization, much better than classical Nns. Finally, we implement the experiment on a quantum processor to prove the simulation’s results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Nielsen, M.A.: Neural networks and deep learning. Determination press, San Francisco (2015)

    Google Scholar 

  2. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press, Cambridge (2016)

    Google Scholar 

  3. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  ADS  Google Scholar 

  4. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning. Springer, Berlin (2006)

    Google Scholar 

  6. Jurafsky, D.: Speech & language processing. Pearson Education India, New York (2000)

    Google Scholar 

  7. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)

    Article  ADS  Google Scholar 

  8. Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Prog. Phys. 81(7), 074001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  9. Logan, G.W., Peter, L.M.: The capacity of quantum neural network. (2019) arXiv:1908.01364

  10. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 4213 (2014)

    Article  ADS  Google Scholar 

  11. McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18(2), 023023 (2016)

    Article  ADS  Google Scholar 

  12. Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors (2018) arXiv:1802.06002

  13. Wan, K.H., Dahlsten, O., Kristjánsson, H., Gardner, R., Kim, M.: Quantum generalisation of feedforward neural networks. Quant. Inf. 3(1), 36 (2017)

    Article  Google Scholar 

  14. Gonçalves, C.P.: Quantum neural machine learning-backpropagation and dynamics (2016) arXiv:1609.06935

  15. Killoran, N., Bromley, T.R., Arrazola, J.M., Schuld, M., Quesada, N., Lloyd, S.: Continuous-variable quantum neural networks. Phys. Rev. Res. 1(3), 033063 (2019)

    Article  Google Scholar 

  16. Steinbrecher, G.R., Olson, J.P., Englund, D., Carolan, J.: Quantum optical neural networks. Quant. Inf. 5(1), 60 (2019)

    Article  Google Scholar 

  17. Schuld, M., Sinayskiy, I., Petruccione, F.: The quest for a quantum neural network. Quant. Inf. Process. 13, 2567–2586 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  18. Arute, F., Arya, K., Babbush, R.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019)

    Article  ADS  Google Scholar 

  19. Shi, J., Wang, W., Lou, X., Zhang, S., Li, X.: Parameterized hamiltonian learning with quantum circuit. IEEE Trans. Pattern Anal. Mach. Intell. 45, 6086–6095 (2022)

    Google Scholar 

  20. Shi, J., Tang, Y., Lu, Y., Feng, Y., Shi, R., Zhang, S.: Quantum circuit learning with parameterized boson sampling. IEEE Trans. Knowl. Data Eng. 35, 1965–1976 (2023)

    Google Scholar 

  21. Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15, 1273–1278 (2019)

    Article  Google Scholar 

  22. Tian, J., Sun, X., Du, Y., Zhao, S., Liu, Q., Zhang, K., Yi, W., Huang, W., Wang, C., Wu, X., Hsieh, M.-H., Liu, T., Yang, W.-B., Tao, D.: Recent advances for quantum neural networks in generative learning. IEEE Trans. Pattern Anal. Mach. Intell. PP, 37126624 (2023)

    Google Scholar 

  23. Quezada, L.F., Sun, G.-H., Dong, S.-H.: Quantum version of the k-nn classifier based on a quantum sorting algorithm. Annalen der Physik 534, 2100449 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  24. Huang, H.-Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., McClean, J.R.: Power of data in quantum machine learning. Nat. Commun. 12(1), 2631 (2021)

    Article  ADS  Google Scholar 

  25. Abbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., Woerner, S.: The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2020)

    Article  Google Scholar 

  26. West, M.T., Tsang, S.L., Low, J.S., Hill, C.D., Leckie, C., Hollenberg, L.C.L., Erfani, S.M., Usman, M.: Towards quantum enhanced adversarial robustness in machine learning. Nat. Mach. Intell. 5, 581–589 (2023)

    Article  Google Scholar 

  27. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: from theory to algorithms. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  28. Caro, M.C., Huang, H.-Y., Cerezo, M., Sharma, K., Sornborger, A., Cincio, L., Coles, P.J.: Generalization in quantum machine learning from few training data. Nat. Commun. 13(1), 4919 (2022)

    Article  ADS  Google Scholar 

  29. Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019)

    Article  ADS  Google Scholar 

  30. Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., Killoran, N.: Quantum embeddings for machine learning (2020) arXiv:2001.03622

  31. Dendukuri, A., Keeling, B., Fereidouni, A., Burbridge, J., Luu, K., Churchill, H.: Defining quantum neural networks via quantum time evolution (2019) arXiv:1905.10912

  32. Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12(1), 1791 (2021)

    Article  ADS  Google Scholar 

  33. Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann, D., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11(1), 808 (2020)

    Article  ADS  Google Scholar 

  34. Jiang, J., Zhang, X., Li, C., Zhao, Y., Li, R.: Generalization study of quantum neural network (2020) arXiv:2006.02388

  35. Lu, S., Duan, L.-M., Deng, D.-L.: Quantum adversarial machine learning. Phys. Rev. Res. 2(3), 033212 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to E.D. Wang and Mr. W.F. Gong for the helpful discussions, also acknowledge to Origin Quantum for providing the quantum computing platform for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (xlsx 300 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Zhao, Y., Li, R. et al. Strong generalization in quantum neural networks. Quantum Inf Process 22, 428 (2023). https://doi.org/10.1007/s11128-023-04095-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04095-x

Keywords

Navigation