Abstract
Generalization is an important feature of neural networks (Nns) as it indicates their ability to predict new and unknown data. However, classical Nns face the challenge of overcoming overfitting in applications due to their nonlinear characteristics, which represents poor generalization. By combining quantum computing with Nns, quantum neural networks (Qnns) have more potential than classical Nns. In this work, we study the generalization of Qnns and compare it with classical Nns. We prove that Qnns have a generalization error bound and propose its theoretical value. We also show that Qnns perform almost the same on the training dataset and test dataset without the overfitting phenomenon. To validate our proposal, we simulate three Qnn models on two public datasets and compare them with a traditional network model. The results demonstrate that Qnns have ideal generalization, much better than classical Nns. Finally, we implement the experiment on a quantum processor to prove the simulation’s results.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Nielsen, M.A.: Neural networks and deep learning. Determination press, San Francisco (2015)
Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press, Cambridge (2016)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)
Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning. Springer, Berlin (2006)
Jurafsky, D.: Speech & language processing. Pearson Education India, New York (2000)
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)
Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Prog. Phys. 81(7), 074001 (2018)
Logan, G.W., Peter, L.M.: The capacity of quantum neural network. (2019) arXiv:1908.01364
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 4213 (2014)
McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18(2), 023023 (2016)
Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors (2018) arXiv:1802.06002
Wan, K.H., Dahlsten, O., Kristjánsson, H., Gardner, R., Kim, M.: Quantum generalisation of feedforward neural networks. Quant. Inf. 3(1), 36 (2017)
Gonçalves, C.P.: Quantum neural machine learning-backpropagation and dynamics (2016) arXiv:1609.06935
Killoran, N., Bromley, T.R., Arrazola, J.M., Schuld, M., Quesada, N., Lloyd, S.: Continuous-variable quantum neural networks. Phys. Rev. Res. 1(3), 033063 (2019)
Steinbrecher, G.R., Olson, J.P., Englund, D., Carolan, J.: Quantum optical neural networks. Quant. Inf. 5(1), 60 (2019)
Schuld, M., Sinayskiy, I., Petruccione, F.: The quest for a quantum neural network. Quant. Inf. Process. 13, 2567–2586 (2014)
Arute, F., Arya, K., Babbush, R.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019)
Shi, J., Wang, W., Lou, X., Zhang, S., Li, X.: Parameterized hamiltonian learning with quantum circuit. IEEE Trans. Pattern Anal. Mach. Intell. 45, 6086–6095 (2022)
Shi, J., Tang, Y., Lu, Y., Feng, Y., Shi, R., Zhang, S.: Quantum circuit learning with parameterized boson sampling. IEEE Trans. Knowl. Data Eng. 35, 1965–1976 (2023)
Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15, 1273–1278 (2019)
Tian, J., Sun, X., Du, Y., Zhao, S., Liu, Q., Zhang, K., Yi, W., Huang, W., Wang, C., Wu, X., Hsieh, M.-H., Liu, T., Yang, W.-B., Tao, D.: Recent advances for quantum neural networks in generative learning. IEEE Trans. Pattern Anal. Mach. Intell. PP, 37126624 (2023)
Quezada, L.F., Sun, G.-H., Dong, S.-H.: Quantum version of the k-nn classifier based on a quantum sorting algorithm. Annalen der Physik 534, 2100449 (2022)
Huang, H.-Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., McClean, J.R.: Power of data in quantum machine learning. Nat. Commun. 12(1), 2631 (2021)
Abbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., Woerner, S.: The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2020)
West, M.T., Tsang, S.L., Low, J.S., Hill, C.D., Leckie, C., Hollenberg, L.C.L., Erfani, S.M., Usman, M.: Towards quantum enhanced adversarial robustness in machine learning. Nat. Mach. Intell. 5, 581–589 (2023)
Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: from theory to algorithms. Cambridge University Press, Cambridge (2014)
Caro, M.C., Huang, H.-Y., Cerezo, M., Sharma, K., Sornborger, A., Cincio, L., Coles, P.J.: Generalization in quantum machine learning from few training data. Nat. Commun. 13(1), 4919 (2022)
Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019)
Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., Killoran, N.: Quantum embeddings for machine learning (2020) arXiv:2001.03622
Dendukuri, A., Keeling, B., Fereidouni, A., Burbridge, J., Luu, K., Churchill, H.: Defining quantum neural networks via quantum time evolution (2019) arXiv:1905.10912
Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12(1), 1791 (2021)
Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann, D., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11(1), 808 (2020)
Jiang, J., Zhang, X., Li, C., Zhao, Y., Li, R.: Generalization study of quantum neural network (2020) arXiv:2006.02388
Lu, S., Duan, L.-M., Deng, D.-L.: Quantum adversarial machine learning. Phys. Rev. Res. 2(3), 033212 (2020)
Acknowledgements
We would like to express our sincere thanks to E.D. Wang and Mr. W.F. Gong for the helpful discussions, also acknowledge to Origin Quantum for providing the quantum computing platform for this work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no competing interests to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jiang, J., Zhao, Y., Li, R. et al. Strong generalization in quantum neural networks. Quantum Inf Process 22, 428 (2023). https://doi.org/10.1007/s11128-023-04095-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-04095-x