Abstract
In this paper, we discuss quantum randomness expansion using the unreliable source device and the honest measure device consisting of mutually unbiased bases in 3-dimensional Hilbert space. Then, we obtain the relationship between 3-dimensional quantum witness and random number generation rate. Furthermore, the analytic expression of the relationship is given, which is of great significance for security analysis and practical application. This work can be considered a preliminary attempt for semi-device-independent quantum random number extension protocols in 3-dimensional Hilbert space.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The data used or analyzed in this study are available to all and can be requested from the corresponding author if the reader is interested.
References
Mannalath, V., Mishra, S., Pathak, A.: A comprehensive review of quantum random number generators: concepts, classification and the origin of randomness (2022). arXiv preprint arXiv:2203.00261
Kollmitzer, C., Petscharnig, S., Suda, M., Mehic, M.: Quantum Random Number Generation, Quantum Science and Technology, pp. 11–34. Springer, Cham (2020)
Pironio, S., Acin, A., Massar, S., Boyer de La Giroday, A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bells theorem. Nature 464(7291), 1021 (2010)
Gallego, R., Brunner, N., Hadley, C., Acin, A.: Device independent tests of classical and quantum dimensions. Phys. Rev. Lett. 105, 230501 (2010)
Colbeck, R., Renner, R.: Free randomness can be amplified. Nat. Phys. 8, 450 (2012)
Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and a lower bound for 1-way quantum automata. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing (1999)
Tavakoli, A., Hameedi, A., Marques, B., Bourennane, M.: Quantum random access codes using single d-Level systems. Phys. Rev. Lett. 114, 170502 (2015)
Wiesner, S.: Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983)
Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656–4659 (1996)
Brassard, G.: Brief History of Quantum Cryptography: A Personal Perspective. arXiv:quant-ph/0604072v1 (2005)
Pawłowski, M., Brunner, N.: Semi-device-independent security of one-way quantum key distribution. Phys. Rev. A 84, 010302(R) (2011)
Li, H.W., Yin, Z.Q., Wu, Y.C., Zou, X.B., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Semi-device-independent random-number expansion without entanglement. Phys. Rev. A 84, 034301 (2011)
Li, H.W., Pawłowski, M., Yin, Z.Q., Guo, G.C., Han, Z.F.: Semi-device-independent randomness certification using \(n\rightarrow 1\) quantum random access codes. Phys. Rev. A 85, 052308 (2012)
Mannalath, V., Pathak, A.: Bounds on semi-device-independent quantum random number expansion capabilities. Phys. Rev. A 105(2), 022435 (2022)
Zhou, Y.Q., Li, H.W., Wang, Y.K., Li, D.D., Gao, F., Wen, Q.Y.: Semi-device-independent randomness expansion with partially free random sources. Phys. Rev. A 92, 022331 (2015)
Zhou, Y.Q., Wang, Y.K., Li, D.D., Li, X.H., Gao, F., Wen, Q.Y.: Semi-device-independent randomness expansion with partially free random sources using 3\(\rightarrow \) 1 quantum random access code. Phys. Rev. A 94, 032318 (2016)
Vaisakh, M., Krishna Patra, R., Janpandit, M., Sen, S., Banik, M., Chaturvedi, A.: Mutually unbiased balanced functions and generalized random access codes. Phys. Rev. A 104(1), 012420 (2021)
Nie, Y.Q., Guan, J.Y., Zhou, H.Y., Zhang, Q., Ma, X.F., Zhang, J., Pan, J.W.: Experimental measurement-device-independent quantum random-number generation. Phys. Rev. A 94, 060301(R) (2016)
Marangon, D.G., Vallone, G., Villoresi, P.: Source-device-independent ultrafast quantum random number generation. Phys. Rev. L 118, 060503 (2017)
Cheng, J.L., Qin, J.L., Liang, S.C., Li, J.T., Yan, Z.H., Jia, X.J.: Kunchi Peng Mutually testing source-device-independent quantum random number generator. Photon. Res. 10(3), 03000646 (2022)
Zhou, Y.Q., Dong, Y.Q., Yao, Q.K., Zhang, Z.Y., Li, D., Wang, Q.L.: \(n\rightarrow 1\) quantum random acess codes using single \(3\)-level systems. Quantum Inf. Process. 37, 377 (2021)
Nisan, N., Ta-Shma, A.: Extracting randomness: a survey and new constructions. J. Comput. Syst. Sci. 58, 148 (1999)
Caves, C.M., Milburn, G.J.: Qutrit entanglement. Opt. Commun. 179, 439 (2000)
Bolukbai, A.T., Dereli, T.: On the \(SU(3)\) parametrization of qutrits. J. Phys. Conf. Ser. 36, 28–32 (2006)
Acknowledgements
This work is supported by Natural Science Foundation of China (Grant Nos. 61901218, 62002162, 62172216), Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20190407, BK20200442, BK20211180), the Research Fund of State Key Laboratory of Integrated Services Networks (No. ISN23-20), and the Research Fund of Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS202107).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhou, YQ., Yao, QK., Dong, YQ. et al. Source-device-independent randomness expansion using quantum random access codes. Quantum Inf Process 22, 214 (2023). https://doi.org/10.1007/s11128-023-03967-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-03967-6