Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Channel polarization of two-dimensional-input quantum symmetric channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Being attracted by the property of classical polar code, researchers are trying to find its analogue in quantum fields, which is called quantum polar code. The first step and the key to design quantum polar code is to find out for the quantity which can measure the quality of quantum channels, whether there is a polarization phenomenon which is similar to classical channel polarization. Coherent information is believed to be the quantum analogue of classical mutual information and the quantity to measure the capacity of quantum channel. In this paper, we define a class of quantum channels called quantum symmetric channels and prove that for quantum symmetric channels, under the similar channel combining and splitting process as in the classical channel polarization, the maximum single-letter coherent information of the coordinate channels will polarize. That is to say, there is a channel polarization phenomenon in quantum symmetric channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

Not applicable.

References

  1. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995). https://doi.org/10.1103/PhysRevA.52.R2493

    Article  ADS  Google Scholar 

  2. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996). https://doi.org/10.1103/PhysRevLett.77.793

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962). https://doi.org/10.1109/TIT.1962.1057683

    Article  MathSciNet  MATH  Google Scholar 

  4. MacKay, D.J.C.: Good error-correcting codes based on very sparse matrices. IRE Trans. Inf. Theory 45(2), 399–431 (1999). https://doi.org/10.1109/18.748992

    Article  MathSciNet  MATH  Google Scholar 

  5. MacKay, D.J., Neal, R.M.: Near Shannon limit performance of low density parity check codes. Electron. Lett. 32(18), 1645 (1996)

    Article  ADS  Google Scholar 

  6. Arikan, E.: Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009). https://doi.org/10.1109/TIT.2009.2021379

    Article  MathSciNet  MATH  Google Scholar 

  7. Bravyi, S.B., Kitaev, A.Y.: Quantum codes on a lattice with boundary. arXiv preprint arXiv:quant-ph/9811052 (1998)

  8. Stephens, A.M.: Fault-tolerant thresholds for quantum error correction with the surface code. Phys. Rev. A 89, 022321 (2014). https://doi.org/10.1103/PhysRevA.89.022321

    Article  ADS  Google Scholar 

  9. Bullock, S.S., Brennen, G.K.: Qudit surface codes and gauge theory with finite cyclic groups. J. Phys. A Math. Theor. 40(13), 3481 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Zémor, G.: On Cayley graphs, surface codes, and the limits of homological coding for quantum error correction. In: International Conference on Coding and Cryptology, pp. 259–273. Springer (2009)

  11. Wang, D.S., Fowler, A.G., Stephens, A.M., Hollenberg, L.C.L.: Threshold error rates for the toric and surface codes. arXiv preprint arXiv:0905.0531 (2009)

  12. Fowler, A.G., Stephens, A.M., Groszkowski, P.: High-threshold universal quantum computation on the surface code. Phys. Rev. A 80, 052312 (2009). https://doi.org/10.1103/PhysRevA.80.052312

    Article  ADS  Google Scholar 

  13. Bravyi, S., Duclos-Cianci, G., Poulin, D., Suchara, M.: Subsystem surface codes with three-qubit check operators. arXiv preprint arXiv:1207.1443 (2012)

  14. Ghosh, J., Fowler, A.G., Geller, M.R.: Surface code with decoherence: an analysis of three superconducting architectures. Phys. Rev. A 86(6), 062318 (2012)

    Article  ADS  Google Scholar 

  15. Fowler, A.G.: Proof of finite surface code threshold for matching. Phys. Rev. Lett. 109, 180502 (2012). https://doi.org/10.1103/PhysRevLett.109.180502

    Article  ADS  Google Scholar 

  16. Wootton, J.R., Loss, D.: High threshold error correction for the surface code. Phys. Rev. Lett. 109, 160503 (2012). https://doi.org/10.1103/PhysRevLett.109.160503

    Article  ADS  Google Scholar 

  17. Fowler, A.G., Whiteside, A.C., Hollenberg, L.C.L.: Towards practical classical processing for the surface code: timing analysis. Phys. Rev. A 86, 042313 (2012). https://doi.org/10.1103/PhysRevA.86.042313

    Article  ADS  Google Scholar 

  18. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012). https://doi.org/10.1103/PhysRevA.86.032324

    Article  ADS  Google Scholar 

  19. Fowler, A.G.: Optimal complexity correction of correlated errors in the surface code. arXiv preprint arXiv:1310.0863 (2013)

  20. Barends, R., Kelly, J., Megrant, A., Veitia, A., Sank, D., Jeffrey, E., White, T.C., Mutus, J., Fowler, A.G., Campbell, B., et al.: Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508(7497), 500–503 (2014)

    Article  ADS  Google Scholar 

  21. Hill, C.D., Peretz, E., Hile, S.J., House, M.G., Fuechsle, M., Rogge, S., Simmons, M.Y., Hollenberg, L.C.: A surface code quantum computer in silicon. Sci. Adv. 1(9), 1500707 (2015)

    Article  ADS  Google Scholar 

  22. Delfosse, N., Iyer, P., Poulin, D.: A linear-time benchmarking tool for generalized surface codes. arXiv preprint arXiv:1611.04256 (2016)

  23. Versluis, R., Poletto, S., Khammassi, N., Tarasinski, B., Haider, N., Michalak, D.J., Bruno, A., Bertels, K., DiCarlo, L.: Scalable quantum circuit and control for a superconducting surface code. Phys. Rev. Appl. 8, 034021 (2017). https://doi.org/10.1103/PhysRevApplied.8.034021

    Article  ADS  Google Scholar 

  24. Huang, C., Ni, X., Zhang, F., Newman, M., Ding, D., Gao, X., Wang, T., Zhao, H.-H., Wu, F., Zhang, G., et al.: Alibaba cloud quantum development platform: surface code simulations with crosstalk. arXiv preprint arXiv:2002.08918 (2020)

  25. Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38(4), 1207–1282 (2008). https://doi.org/10.1137/S0097539799359385

    Article  MathSciNet  MATH  Google Scholar 

  26. Knill, E., Laflamme, R.: Concatenated quantum codes. arXiv preprint arXiv:quant-ph/9608012 (1996)

  27. Knill, E.: Quantum computing with realistically noisy devices. Nature 434(7029), 39–44 (2005)

    Article  ADS  Google Scholar 

  28. Gottesman, D.: Fault-tolerant quantum computation with constant overhead. arXiv preprint arXiv:1310.2984 (2013)

  29. Tillich, J.-P., Zémor, G.: Quantum LDPC codes with positive rate and minimum distance proportional to the square root of the blocklength. IEEE Trans. Inf. Theory 60(2), 1193–1202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Freedman, M.H., Hastings, M.B.: Quantum systems on non-\( k \)-hyperfinite complexes: A generalization of classical statistical mechanics on expander graphs. arXiv preprint arXiv:1301.1363 (2013)

  31. Guth, L., Lubotzky, A.: Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds. J. Math. Phys. 55(8), 082202 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Kovalev, A.A., Pryadko, L.P.: Fault tolerance of quantum low-density parity check codes with sublinear distance scaling. Phys. Rev. A 87(2), 020304 (2013)

    Article  ADS  Google Scholar 

  33. Hastings, M.B.: Decoding in hyperbolic spaces: Ldpc codes with linear rate and efficient error correction. arXiv preprint arXiv:1312.2546 (2013)

  34. Breuckmann, N.P., Terhal, B.M.: Constructions and noise threshold of hyperbolic surface codes. IEEE Trans. Inf. Theory 62(6), 3731–3744 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Breuckmann, N.P., Vuillot, C., Campbell, E., Krishna, A., Terhal, B.M.: Hyperbolic and semi-hyperbolic surface codes for quantum storage. Quantum Sci. Technol. 2(3), 035007 (2017)

    Article  ADS  Google Scholar 

  36. Breuckmann, N.P., Londe, V.: Single-shot decoding of linear rate LDPC quantum codes with high performance. IEEE Trans. Inf. Theory 68(1), 272–286 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Grospellier, A., Grouès, L., Krishna, A., Leverrier, A.: Combining hard and soft decoders for hypergraph product codes. Quantum 5, 432 (2021)

    Article  Google Scholar 

  38. Guo, Y., Lee, M.H., Zeng, G.: Polar quantum channel coding with optical multi-qubit entangling gates for capacity-achieving channels. Quantum Inf. Process. 12(4), 1659–1676 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Renes, J.M., Dupuis, F., Renner, R.: Efficient polar coding of quantum information. Phys. Rev. Lett. 109(5), 050504 (2012)

    Article  ADS  Google Scholar 

  40. Wilde, M.M., Guha, S.: Polar codes for degradable quantum channels. IEEE Trans. Inf. Theory 59(7), 4718–4729 (2013)

    Article  Google Scholar 

  41. Hirche, C.: Polar codes in quantum information theory. arXiv preprint arXiv:1501.03737 (2015)

  42. Renes, J.M., Sutter, D., Dupuis, F., Renner, R.: Efficient quantum polar codes requiring no preshared entanglement. IEEE Trans. Inf. Theory 61(11), 6395–6414 (2015). https://doi.org/10.1109/TIT.2015.2468084

    Article  MathSciNet  MATH  Google Scholar 

  43. Hirche, C., Morgan, C., Wilde, M.M.: Polar codes in network quantum information theory. IEEE Trans. Inf. Theory 62(2), 915–924 (2016). https://doi.org/10.1109/TIT.2016.2514319

    Article  MathSciNet  MATH  Google Scholar 

  44. Dupuis, F., Goswami, A., Mhalla, M., Savin, V.: Purely quantum polar codes. In: 2019 IEEE Information Theory Workshop (ITW), pp. 1–5 (2019). https://doi.org/10.1109/ITW44776.2019.8989387

  45. Wilde, M.M., Guha, S.: Polar codes for classical-quantum channels. IEEE Trans. Inf. Theory 59(2), 1175–1187 (2013). https://doi.org/10.1109/TIT.2012.2218792

    Article  MathSciNet  MATH  Google Scholar 

  46. Wilde, M.M., Renes, J.M.: Quantum polar codes for arbitrary channels. In: 2012 IEEE International Symposium on Information Theory Proceedings, pp. 334–338 (2012). https://doi.org/10.1109/ISIT.2012.6284203

  47. Goswami, A., Mhalla, M., Savin, V.: Quantum polarization of qudit channels. arXiv preprint arXiv:2101.10194 (2021)

  48. Ramakrishnan, N., Iten, R., Scholz, V.B., Berta, M.: Computing quantum channel capacities. IEEE Trans. Inf. Theory 67(2), 946–960 (2021). https://doi.org/10.1109/TIT.2020.3034471

    Article  MathSciNet  MATH  Google Scholar 

  49. Gyongyosi, L., Imre, S., Nguyen, H.V.: A survey on quantum channel capacities. IEEE Commun. Surv. Tutor. 20(2), 1149–1205 (2018). https://doi.org/10.1109/COMST.2017.2786748

    Article  Google Scholar 

  50. Holevo, A.S.: Quantum channel capacities. Quantum Electron. 50(5), 440 (2020)

    Article  ADS  Google Scholar 

  51. Smith, G.: Quantum channel capacities. In: 2010 IEEE Information Theory Workshop, pp. 1–5 (2010). https://doi.org/10.1109/CIG.2010.5592851

  52. Holevo, A.S., Shirokov, M.E.: Mutual and coherent information for infinite-dimensional quantum channels. Probl. Inf. Transm. 46(3), 201–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Bennett, C.H., Shor, P.W.: Quantum channel capacities. Science 303(5665), 1784–1787 (2004)

    Article  Google Scholar 

  54. Barnum, H., Nielsen, M.A., Schumacher, B.: Information transmission through a noisy quantum channel. Phys. Rev. A 57, 4153–4175 (1998). https://doi.org/10.1103/PhysRevA.57.4153

    Article  ADS  Google Scholar 

  55. Lloyd, S.: Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613–1622 (1997). https://doi.org/10.1103/PhysRevA.55.1613

    Article  ADS  MathSciNet  Google Scholar 

  56. Kretschmann, D., Werner, R.F.: Tema con variazioni: quantum channel capacity. New J. Phys. 6(1), 26 (2004)

    Article  ADS  Google Scholar 

  57. Shor, P.W.: Capacities of quantum channels and how to find them. arXiv preprint arXiv:quant-ph/0304102 (2003)

  58. Javidian, M.A., Aggarwal, V., Bao, F., Jacob, Z.: Quantum entropic causal inference. arXiv preprint arXiv:2102.11764 (2021)

  59. Schumacher, B., Nielsen, M.A.: Quantum data processing and error correction. Phys. Rev. A 54, 2629–2635 (1996). https://doi.org/10.1103/PhysRevA.54.2629

    Article  ADS  MathSciNet  Google Scholar 

  60. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. American Association of Physics Teachers, Maryland (2002)

    MATH  Google Scholar 

  61. Schumacher, B.: Sending entanglement through noisy quantum channels. Phys. Rev. A 54, 2614–2628 (1996). https://doi.org/10.1103/PhysRevA.54.2614

    Article  ADS  Google Scholar 

  62. Hastings, M.B.: Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5(4), 255–257 (2009)

    Article  Google Scholar 

  63. Cubitt, T., Elkouss, D., Matthews, W., Ozols, M., Pérez-García, D., Strelchuk, S.: Unbounded number of channel uses may be required to detect quantum capacity. Nat. Commun. 6(1), 1–4 (2015)

    Article  Google Scholar 

  64. Smith, G., Yard, J.: Quantum communication with zero-capacity channels. Science 321(5897), 1812–1815 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014). https://doi.org/10.1103/PhysRevLett.113.140401

    Article  ADS  Google Scholar 

  66. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015). https://doi.org/10.1103/PhysRevLett.115.020403

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the work, analyzed the results, and wrote the manuscript.

Corresponding author

Correspondence to Xuan Wang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Proposition 5

Proof

Proving \(\mathcal {E}^{\otimes N}\) is a QSC is to prove each row of its BTPM is a permutation of the first row and each column of its BTPM is a permutation of the first column. Here, we will use the same method, which is used to prove Theorem 8 in Sect. 3.1, to prove it.

Suppose the input and output of \(\mathcal {E}^{\otimes N}\) are \(|Q_{1}^{N}\rangle \) and \(|V_{1}^{N}\rangle \), respectively, where \(Q_{1}^{N}=(Q_{1},\dots ,Q_{N})\in \{0,1\}^{N}\) and \(V_{1}^{N}=(V_{1},\dots ,V_{N})\in \{0,1\}^{N}\). Then, the basis transition probability is

$$\begin{aligned} \begin{aligned} Pr_{N}\left( |V_{1}^{N}\rangle ||Q_{1}^{N}\rangle \right)&=\prod _{i=1}^{N} Pr\left( |V_{i}\rangle ||Q_{i}\rangle \right) \end{aligned} \end{aligned}$$
(A1)

Since \(\mathcal {E}\) is a QSC, we have

$$\begin{aligned} \begin{aligned} \prod _{i=1}^{N} Pr\left( |V_{i}\rangle ||Q_{i}\rangle \right)&=\prod _{i=1}^{N} Pr\left( |Q_{i}\cdot V_{i}\rangle ||0\rangle \right) \\&=Pr_{N}\left( |Q_{1}^{N}\cdot V_{1}^{N}\rangle ||0_{1}^{N}\rangle \right) \end{aligned} \end{aligned}$$
(A2)

Hence, we have

$$\begin{aligned} \begin{aligned} Pr_{N}\left( |V_{1}^{N}\rangle ||Q_{1}^{N}\rangle \right) =Pr_{N}\left( |Q_{1}^{N}\cdot V_{1}^{N}\rangle ||0_{1}^{N}\rangle \right) \end{aligned} \end{aligned}$$
(A3)

which means each row of the BTPM of \(\mathcal {E}^{\otimes N}\) is a permutation of the first row and each column of its BTPM is a permutation of the first column. Thus, \(\mathcal {E}^{\otimes N}\) is a QSC. \(\square \)

Appendix B: A particular rule

Before proving Theorem 9, we make a particular rule which will be used in the second step of the proof.

This rule is used to label the operator elements of a channel through a one-to-one relationship between operator elements and output states. First, we fixed the input state \(|Q_{1}^{N}\rangle \) of the quantum combined channel \(\mathcal {E}_{N}\) to \(|0_{1}^{N}\rangle \), and then, arbitrary operator element \(F_{k} \in \left\{ F_{k}\right\} _{k=0, \ldots , 2^{N}-1}\) of the N-copy channel \(\mathcal {E}^{\otimes N}\) uniquely corresponds to a output state \(|V_{1}^{N}\rangle \), \(V_{1}^{N}\in \mathcal {Y}^{N}\), namely

$$\begin{aligned} F_{k}|0_{1}^{N}G_{N}\rangle =\sqrt{Pr_{N}\left( |V_{1}^{N}\rangle ||0_{1}^{N}\rangle \right) }|V_{1}^{N}\rangle \end{aligned}$$
(B4)

By Definition 3, we have

$$\begin{aligned} F_{k}=E_{b_{1}}^{1} \otimes E_{b_{2}}^{2} \otimes \cdots \otimes E_{b_{N}}^{N} \end{aligned}$$
(B5)

where the subscript k of \(F_{k}\) is the decimal number of the binary sequence \(b_{1} b_{2} \ldots b_{N}\).

To further understanding this rule, we take 2-copy channel \(\mathcal {E}^{\otimes 2}\), for example, and primal channel \(\mathcal {E}\) is bit flip channel whose operator elements are \(\{ E_{0}=\sqrt{p}X,E_{1}=\sqrt{1-p}I\}\). It is easy to obtain that four operator elements of \(\mathcal {E}^{\otimes 2}\) are \(F_{0}=pX^{1}\otimes X^{2}\), \(F_{1}=\sqrt{p(1-p)}X^{1}\otimes I^{2}\), \(F_{2}=\sqrt{p(1-p)}I^{1}\otimes X^{2}\) and \(F_{3}=(1-p)I^{1}\otimes I^{2}\), respectively. Assume that the input state of primal channel \(\mathcal {E}\) will only take value from \(|0\rangle =\left( \begin{array}{l}1 \\ 0\end{array}\right) \) or \(|1\rangle =\left( \begin{array}{l}0 \\ 1\end{array}\right) \). Then, the input space \(\{|Q_{1}^{2}\rangle \}\) of the quantum combined channel \(\mathcal {E}_{2}\) must be \(\{|Q_{1}^{2}\rangle \}=\{|00\rangle ,|01\rangle ,|10\rangle ,|11\rangle \}\), and the output space \(\{|V_{1}^{2}\rangle \}\) of the quantum combined channel \(\mathcal {E}_{2}\) must be \(\{|V_{1}^{2}\rangle \}=\{|00\rangle ,|01\rangle ,|10\rangle ,|11\rangle \}\), which means different operator elements \(F_{k},\ 0\le k \le 3\), will map the input space \(\{|Q_{1}^{2}\rangle \}\) to the same output space \(\{|V_{1}^{2}\rangle \}\). Thus, we fixed the input state to \(|00\rangle \), and a one-to-one relationship between operator element \(F_{k}\) \((0\le k\le 3)\) and output state \(|V_{1}^{2}\rangle \) of the channel \(\mathcal {E}^{\otimes 2}\) is established; namely, \(F_{0}\) corresponds to \(|11\rangle \), \(F_{1}\) corresponds to \(|10\rangle \), \(F_{2}\) corresponds to \(|01\rangle \), and \(F_{3}\) corresponds to \(|00\rangle \).

By using Theorem 8 and Eq. (B4), we have

$$\begin{aligned} \begin{aligned} F_{k}|Q_{1}^{N}G_{N}\rangle =\sqrt{Pr_{N}\left( |Q_{1}^{N}G_{N} \cdot V_{1}^{N}\rangle ||Q_{1}^{N}\rangle \right) }|Q_{1}^{N}G_{N} \cdot V_{1}^{N}\rangle \end{aligned} \end{aligned}$$
(B6)

for all \(Q_{1}^{N}\in \mathcal {X}^{N}\) and \(V_{1}^{N}\in \mathcal {Y}^{N}\).

Appendix C: Proof of Theorem 9

In this section, we prove Theorem 9 that the quantum coordinate channels \(\{\mathcal {E}_{N}^{(i)}\}\) are QQSCs. At the second step of the proof, we use the particular rule that we make in “Appendix B.”

Proof

In Sect. 2.5, we define quantum coordinate channel \(\mathcal {E}_{N}^{(i)}\), \(1\le i \le N\), whose input is \(\rho ^{Q_{i}}\) and output is \(\rho ^{V_{1}^{N},R_{1}^{i-1}}\).

1. The first step of the proof: obtain the general form of density operator  \(\rho ^{V_{1}^{N},R_{1}^{i-1}}\) of quantum joint system \(V_{1}^{N},R_{1}^{i-1}\).

Assume that each input state \(\rho ^{Q_{i}}\) of the quantum combined channel \(\mathcal {E}_{N}\) is \(\rho ^{Q_{i}}=q|0\rangle \langle 0|+(1-q)|1\rangle \langle 1|\). Then, we have

$$\begin{aligned} \begin{aligned} \rho ^{Q_{1}^{N}}&=\rho ^{Q_{1}} \otimes \cdots \otimes \rho ^{Q_{N}}\\&=(q|0\rangle \langle 0|+(1-q)|1\rangle \langle 1|)^{\otimes N}\\&=\sum _{Q_{1}^{N} \in \mathcal {X}^{N}}Pr\left( |Q_{1}^{N}\rangle \langle Q_{1}^{N}|\right) |Q_{1}^{N}\rangle \langle Q_{1}^{N}| \end{aligned} \end{aligned}$$
(C7)

where \(Pr\left( |Q_{1}^{N}\rangle \langle Q_{1}^{N}|\right) =\prod _{i=1}^{N}Pr(|Q_{i}\rangle \langle Q_{i}|)\), alphabet \(\mathcal {X}=\{0,1\}\) and \(\mathcal {X}^{N}\) is the N-power extension alphabet of \(\mathcal {X}\). Introduce reference system \(\rho ^{R_{1}^{N}}=\rho ^{R_{1}} \otimes \cdots \otimes \rho ^{R_{N}}\) to purify \(\rho ^{Q_{i}^{N}}\), where \(\rho ^{R_{1}} = \cdots = \rho ^{R_{N}}=\rho ^{Q_{1}} = \cdots = \rho ^{Q_{N}}\). We have

$$\begin{aligned} |\varphi _{Q_{1}^{N},R_{1}^{N}}\rangle =\sum _{Q_{1}^{N}=R_{1}^{N} \in \mathcal {X}^{N}} \sqrt{Pr\left( |Q_{1}^{N}\rangle \langle Q_{1}^{N}|\right) }|Q_{1}^{N},R_{1}^{N}\rangle \end{aligned}$$
(C8)

Then, the density operator \(\rho ^{Q_{1}^{N},R_{1}^{N}}\) of the joint system \(Q_{1}^{N},R_{1}^{N}\) is

$$\begin{aligned} \begin{aligned}&\rho ^{Q_{1}^{N},R_{1}^{N}}\\&\quad =|\varphi _{Q_{1}^{N},R_{1}^{N}}\rangle \langle \varphi _{Q_{1}^{N},R_{1}^{N}}|\\&\quad =\sum _{\begin{array}{c} Q_{1}^{N}=R_{1}^{N} \in \mathcal {X}^{N}\\ \tilde{Q}_{1}^{N}=\tilde{R}_{1}^{N} \in \mathcal {X}^{N} \end{array}} \sqrt{Pr\left( |Q_{1}^{N}\rangle \langle Q_{1}^{N}|\right) }|Q_{1}^{N},R_{1}^{N}\rangle \sqrt{Pr\left( |\tilde{Q}_{1}^{N}\rangle \langle \tilde{Q}_{1}^{N}|\right) }\langle \tilde{Q}_{1}^{N},\tilde{R}_{1}^{N}| \end{aligned} \end{aligned}$$
(C9)

We use a unitary operator \(U_N\) which only acts on system \(Q_{1}^{N}\) to represent the encoding process \(|Q_{1}^{N}\rangle \rightarrow |C_{1}^{N}\rangle \), and we have

$$\begin{aligned} \begin{aligned}&\rho ^{C_{1}^{N},R_{1}^{N}}\\&\quad =U_{N} \rho ^{Q_{1}^{N} R_{1}^{N}} U_{N}^{\dagger }\\&\quad =U_{N} \left( \sum _{\begin{array}{c} Q_{1}^{N}=R_{1}^{N} \in \mathcal {X}^{N}\\ \tilde{Q}_{1}^{N}=\tilde{R}_{1}^{N} \in \mathcal {X}^{N} \end{array}} \sqrt{Pr\left( |Q_{1}^{N}\rangle \langle Q_{1}^{N}|\right) }|Q_{1}^{N},R_{1}^{N}\rangle \sqrt{Pr\left( |\tilde{Q}_{1}^{N}\rangle \langle \tilde{Q}_{1}^{N}|\right) }\langle \tilde{Q}_{1}^{N},\tilde{R}_{1}^{N}|\right) U_{N}^{\dagger }\\&\quad =\sum _{\begin{array}{c} Q_{1}^{N}=R_{1}^{N} \in \mathcal {X}^{N}\\ \tilde{Q}_{1}^{N}=\tilde{R}_{1}^{N} \in \mathcal {X}^{N} \end{array}} \sqrt{Pr\left( |Q_{1}^{N}\rangle \langle Q_{1}^{N}|\right) }|Q_{1}^{N}G_{N},R_{1}^{N}\rangle \sqrt{Pr\left( |\tilde{Q}_{1}^{N}\rangle \langle \tilde{Q}_{1}^{N}|\right) }\langle \tilde{Q}_{1}^{N}G_{N},\tilde{R}_{1}^{N}|\\&\quad =\sum _{R_{1}^{N} \in \mathcal {X}^{N}} \sqrt{Pr\left( |Q_{1}^{N}\rangle \langle Q_{1}^{N}|\right) }|C_{1}^{N},R_{1}^{N}\rangle \sum _{\tilde{R}_{1}^{N} \in \mathcal {X}^{N}} \sqrt{Pr\left( |\tilde{Q}_{1}^{N}\rangle \langle \tilde{Q}_{1}^{N}|\right) }\langle \tilde{C}_{1}^{N},\tilde{R}_{1}^{N}| \end{aligned} \end{aligned}$$
(C10)

where \(C_{1}^{N}=Q_{1}^{N} G_{N}\), \(\tilde{C}_{1}^{N}=\tilde{Q}_{1}^{N} G_{N}\), and \(G_{N}\) is generator matrix.

The channel \(\mathcal {E}^{\otimes N}\), whose operator elements are \(\{ F_{k}\}_{k=0, \ldots , 2^{N}-1}\), follows the encoding process \(|Q_{1}^{N}\rangle \rightarrow |C_{1}^{N}\rangle \). Then, the density operator \(\rho ^{V_{1}^{N},R_{1}^{N}}\) of the output of the channel \(\mathcal {E}^{\otimes N}\) is

$$\begin{aligned} \begin{aligned} \rho ^{V_{1}^{N},R_{1}^{N}}&=\sum _{k=0}^{2^{N}-1}F_{k} \rho ^{C_{1}^{N},R_{1}^{N}} F_{k}^{\dagger } \\&=\sum _{k=0}^{2^{N}-1}F_{k}\sum _{Q_{1}^{N}=R_{1}^{N} \in \mathcal {X}^{N}} \sqrt{Pr\left( |Q_{1}^{N}\rangle \langle Q_{1}^{N}|\right) }|Q_{1}^{N}G_{N},R_{1}^{N}\rangle \\&\qquad \times \sum _{\tilde{Q}_{1}^{N}=\tilde{R}_{1}^{N} \in \mathcal {X}^{N}} \sqrt{Pr\left( |\tilde{Q}_{1}^{N}\rangle \langle \tilde{Q}_{1}^{N}|\right) }\langle \tilde{Q}_{1}^{N}G_{N},\tilde{R}_{1}^{N}| F_{k}^{\dagger } \end{aligned} \end{aligned}$$
(C11)

Notice that the channel \(\mathcal {E}^{\otimes N}\) is the last layer of the channel \(\mathcal {E}_{N}\), so the density operator \(\rho ^{V_{1}^{N},R_{1}^{N}}\) is also the output of the channel \(\mathcal {E}_{N}\). Then, we perform partial trace over the system \(R_{i}^{N}\) and obtain

$$\begin{aligned} \begin{aligned} \begin{aligned}&\rho ^{V_{1}^{N},R_{1}^{N}}\\&\quad =tr_{R_{i}^{N}}\left[ \sum _{k=0}^{2^{N}-1}F_{k}\sum _{Q_{1}^{N}=R_{1}^{N} \in \mathcal {X}^{N}} \sqrt{Pr\left( |Q_{1}^{N}\rangle \langle Q_{1}^{N}|\right) }|Q_{1}^{N}G_{N},R_{1}^{N}\rangle \right. \\&\qquad \times \left. \sum _{\tilde{Q}_{1}^{N}=\tilde{R}_{1}^{N} \in \mathcal {X}^{N}} \sqrt{Pr\left( |\tilde{Q}_{1}^{N}\rangle \langle \tilde{Q}_{1}^{N}|\right) }\langle \tilde{Q}_{1}^{N}G_{N},\tilde{R}_{1}^{N}| F_{k}^{\dagger } \right] \\&\quad =tr_{R_{i}^{N}}\left[ \sum _{k=0}^{2^{N}-1}F_{k}\sum _{Q_{i}^{N}=R_{i}^{N}\in \mathcal {X}^{N-i+1}}\right. \\&\qquad \times \left. \sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) Pr\left( |Q_{i}^{N}\rangle \langle Q_{i}^{N}|\right) }|Q_{1}^{N}G_{N},R_{1}^{i-1},R_{i}^{N}\rangle \right. \\&\qquad \times \left. \sum _{\tilde{Q}_{1}^{i-1}=\tilde{R}_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |\tilde{Q}_{1}^{i-1}\rangle \langle \tilde{Q}_{1}^{i-1}|\right) Pr\left( |Q_{i}^{N}\rangle \langle Q_{i}^{N}|\right) }\langle \tilde{Q}_{1}^{N}G_{N},\tilde{R}_{1}^{i-1},R_{i}^{N}| F_{k}^{\dagger }\right] \\&\quad =\sum _{k=0}^{2^{N}-1}F_{k}\left[ \sum _{Q_{i}^{N}\in \mathcal {X}^{N-i+1}}Pr\left( |Q_{i}^{N}\rangle \langle Q_{i}^{N}|\right) \right. \\&\qquad \times \left. \sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) }|Q_{1}^{N}G_{N},R_{1}^{i-1}\rangle \right. \\&\qquad \left. \times \sum _{\tilde{Q}_{1}^{i-1}=\tilde{R}_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |\tilde{Q}_{1}^{i-1}\rangle \langle \tilde{Q}_{1}^{i-1}|\right) }\langle \tilde{Q}_{1}^{N}G_{N},\tilde{R}_{1}^{i-1}|\right] F_{k}^{\dagger } \end{aligned} \end{aligned} \end{aligned}$$
(C12)

Equation (C12) guarantees that

$$\begin{aligned} \begin{aligned} \sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) }|Q_{1}^{N}G_{N},R_{1}^{i-1}\rangle \end{aligned} \end{aligned}$$
(C13)

must be a unit vector, since it is easy to verify \(\sum _{Q_{1}^{i-1}\in \mathcal {X}^{i-1}}Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) =1\). Divide Eq. (C12) into two parts: \(Q_{i}=0\) and \(Q_{i}=1\), we have

$$\begin{aligned} \rho ^{V_{1}^{N},R_{1}^{i-1}}=\rho _{V_{1}^{N},R_{1}^{i-1}}^{(0)}+\rho _{V_{1}^{N},R_{1}^{i-1}}^{(1)} \end{aligned}$$
(C14)

where

$$\begin{aligned} \begin{aligned} \begin{aligned} \rho _{V_{1}^{N},R_{1}^{i-1}}^{(0)}&=q\sum _{k=0}^{2^{N}-1}F_{k}\left[ \sum _{Q_{i+1}^{N}\in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) \right. \\&\quad \times \left. \sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) }|(Q_{1}^{i-1},0,Q_{i+1}^{N})G_{N},R_{1}^{i-1}\rangle \right. \\&\quad \times \left. \sum _{\tilde{Q}_{1}^{i-1}=\tilde{R}_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |\tilde{Q}_{1}^{i-1}\rangle \langle \tilde{Q}_{1}^{i-1}|\right) }\langle (\tilde{Q}_{1}^{i-1},0,Q_{i+1}^{N})G_{N},\tilde{R}_{1}^{i-1}|\right] F_{k}^{\dagger } \end{aligned} \end{aligned} \end{aligned}$$
(C15)

and

$$\begin{aligned} \begin{aligned} \begin{aligned} \rho _{V_{1}^{N},R_{1}^{i-1}}^{(1)}&=(1-q)\sum _{k=0}^{2^{N}-1}F_{k}\left[ \sum _{Q_{i+1}^{N}\in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) \right. \\&\quad \times \left. \sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) }|(Q_{1}^{i-1},1,Q_{i+1}^{N})G_{N},R_{1}^{i-1}\rangle \right. \\&\quad \times \left. \sum _{\tilde{Q}_{1}^{i-1}=\tilde{R}_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |\tilde{Q}_{1}^{i-1}\rangle \langle \tilde{Q}_{1}^{i-1}|\right) }\langle (\tilde{Q}_{1}^{i-1},1,Q_{i+1}^{N})G_{N},\tilde{R}_{1}^{i-1}|\right] F_{k}^{\dagger } \end{aligned} \end{aligned} \end{aligned}$$
(C16)

For \(\rho _{V_{1}^{N},R_{1}^{i-1}}^{(0)}\) and \(\rho _{V_{1}^{N},R_{1}^{i-1}}^{(1)}\), we exchange summation order and obtain

$$\begin{aligned} \begin{aligned} \begin{aligned}&\rho _{V_{1}^{N},R_{1}^{i-1}}^{(0)}\\&\quad =q\sum _{Q_{i+1}^{N}\in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) \\&\qquad \times \sum _{k=0}^{2^{N}-1}F_{k}\left[ \sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) } |(Q_{1}^{i-1},0,Q_{i+1}^{N})G_{N},R_{1}^{i-1}\rangle \right. \\&\qquad \left. \times \sum _{\tilde{Q}_{1}^{i-1}=\tilde{R}_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |\tilde{Q}_{1}^{i-1}\rangle \langle \tilde{Q}_{1}^{i-1}|\right) }\langle (\tilde{Q}_{1}^{i-1},0,Q_{i+1}^{N})G_{N},\tilde{R}_{1}^{i-1}|\right] F_{k}^{\dagger } \end{aligned} \end{aligned} \end{aligned}$$
(C17)

and

$$\begin{aligned} \begin{aligned} \begin{aligned}&\rho _{V_{1}^{N},R_{1}^{i-1}}^{(1)}\\&\quad =(1-q)\sum _{Q_{i+1}^{N}\in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) \\&\qquad \times \sum _{k=0}^{2^{N}-1}F_{k}\left[ \sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) } |(Q_{1}^{i-1},1,Q_{i+1}^{N})G_{N},R_{1}^{i-1}\rangle \right. \\&\qquad \left. \times \sum _{\tilde{Q}_{1}^{i-1}=\tilde{R}_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |\tilde{Q}_{1}^{i-1}\rangle \langle \tilde{Q}_{1}^{i-1}|\right) } \langle (\tilde{Q}_{1}^{i-1},1,Q_{i+1}^{N})G_{N},\tilde{R}_{1}^{i-1}|\right] F_{k}^{\dagger } \end{aligned} \end{aligned} \end{aligned}$$
(C18)

2. The second step of the proof: prove that the density operator \(\rho ^{V_{1}^{N},R_{1}^{i-1}}\) can be diagonalized with respect to a set of basis \(\{ |m^{\prime }\rangle \}_{m=0,\ldots ,2^{N}-1}\).

We will prove that density operators \(\rho _{V_{1}^{N},R_{1}^{i-1}}^{(0)}\) and \(\rho _{V_{1}^{N},R_{1}^{i-1}}^{(1)}\) can be diagonalized with respect to a same set of basis \(\{ |m^{\prime }\rangle \}_{m=0,\ldots ,2^{N}-1}\), namely

$$\begin{aligned} \rho _{V_{1}^{N},R_{1}^{i-1}}^{(0)}= & {} q\sum _{m=0}^{2^{N}-1}Pr_{N}^{(i)}\left( |m^{\prime }\rangle ||0\rangle \right) |m^{\prime }\rangle \langle m^{\prime }| \end{aligned}$$
(C19)
$$\begin{aligned} \rho _{V_{1}^{N},R_{1}^{i-1}}^{(1)}= & {} (1-q)\sum _{m=0}^{2^{N}-1}Pr_{N}^{(i)}\left( |m^{\prime }\rangle ||1\rangle \right) |m^{\prime }\rangle \langle m^{\prime }| \end{aligned}$$
(C20)

We consider \(\rho _{V_{1}^{N},R_{1}^{i-1}}^{(0)}\) only, since the proof method of \(\rho _{V_{1}^{N},R_{1}^{i-1}}^{(1)}\) is the same as that of \(\rho _{V_{1}^{N},R_{1}^{i-1}}^{(0)}\). We first prove that the vector \(|m^{\prime }\rangle \) can be written as

$$\begin{aligned} \begin{aligned} |m^{\prime }\rangle&=\sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) }|(Q_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N},R_{1}^{i-1}\rangle \end{aligned} \end{aligned}$$
(C21)

Since for all \(Q_{i+1}^{N}\in \mathcal {X}^{N-i}\), operation elements \(\{F_{k}\}_{k=0,\ldots ,2^{N}-1}\) will map vector

$$\begin{aligned} \begin{aligned} \sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) }|(Q_{1}^{i-1},0,Q_{i+1}^{N})G_{N},R_{1}^{i-1}\rangle \end{aligned} \end{aligned}$$
(C22)

to a same set of orthogonal basis \(\{ |m^{\prime }\rangle \}_{m=0,\ldots ,2^{N}-1}\), which contains \(2^{N}\) basis vectors. Thus, without losing generality, we can let \(Q_{i+1}^{N}=0_{i+1}^{N}\). Using Eq. (B4), Eq. (B6) and Theorem 8, we have

$$\begin{aligned} \begin{aligned}&F_{k}\sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) }|(Q_{1}^{i-1},0,Q_{i+1}^{N})G_{N},R_{1}^{i-1}\rangle \\&\quad =\sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}}\sqrt{Pr_{N}\left( |\left( Q_{1}^{i-1},0,0_{i+1}^{N}\right) G_{N}\cdot V_{1}^{N}\rangle ||Q_{1}^{i-1},0,0_{i+1}^{N}\rangle \right) } \\&\qquad \times \sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) }|(Q_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N},R_{1}^{i-1}\rangle \\&\quad =\sqrt{Pr_{N}\left( |V_{1}^{N}\rangle ||0_{1}^{N}\rangle \right) }\\&\qquad \times \sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) }|(Q_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N},R_{1}^{i-1}\rangle \\&\quad =\sqrt{Pr_{N}\left( |V_{1}^{N}\rangle ||0_{1}^{N}\rangle \right) }|m^{\prime }\rangle \end{aligned} \end{aligned}$$
(C23)

which proves Eq. (C21).

Observe Eq. (C23), there is a one-to-one relationship between \(F_{k}\) and \(V_{1}^{N}\); thus, sum over all \(F_{k}\) is sum over all \(V_{1}^{N}\) and Eq. (C17) can be rewritten as

$$\begin{aligned} \rho _{V_{1}^{N},R_{1}^{i-1}}^{(0)}&=q\sum _{Q_{i+1}^{N}\in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) \sum _{V_{1}^{N}\in \mathcal {Y}^{N}} \nonumber \\&\quad \times \sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}} Pr_{N}\left( |\left( Q_{1}^{i-1},0,0_{i+1}^{N}\right) G_{N}\cdot V_{1}^{N}\rangle ||Q_{1}^{i-1},0,Q_{i+1}^{N}\rangle \right) \nonumber \\&\quad \times \sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) }|(Q_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N},R_{1}^{i-1}\rangle \nonumber \\&\quad \times \sum _{ \tilde{Q}_{1}^{i-1} =\tilde{R}_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |\tilde{Q}_{1}^{i-1}\rangle \langle \tilde{Q}_{1}^{i-1}|\right) }\langle (\tilde{Q}_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N},\tilde{R}_{1}^{i-1}|\nonumber \\&=q\sum _{Q_{i+1}^{N}\in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) \sum _{V_{1}^{N}\in \mathcal {Y}^{N}}Pr_{N}\left( |V_{1}^{N}\rangle ||0_{1}^{i-1},0,Q_{i+1}^{N}\rangle \right) \nonumber \\&\quad \times \sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}}\sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) }|(Q_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N},R_{1}^{i-1}\rangle \nonumber \\&\quad \times \sum _{\tilde{Q}_{1}^{i-1}=\tilde{R}_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |\tilde{Q}_{1}^{i-1}\rangle \langle \tilde{Q}_{1}^{i-1}|\right) }\langle (\tilde{Q}_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N},\tilde{R}_{1}^{i-1}| \end{aligned}$$
(C24)

Here, we use the fact that \(Pr_{N}\left( |V_{1}^{N}\rangle ||Q_{1}^{N}\rangle \right) =Pr_{N}\left( |a_{1}^{N} G_{N} \cdot V_{1}^{N}\rangle ||Q_{1}^{N} \oplus a_{1}^{N}\rangle \right) \) which is according to Theorem 8, so let \(a_{1}^{N}=Q_{1}^{i-1},0,0_{i+1}^{N}\); we have

$$\begin{aligned} \begin{aligned}&Pr_{N}\left( |V_{1}^{N}\rangle ||0_{1}^{i-1},0,Q_{i+1}^{N}\rangle \right) =Pr_{N}\left( |\left( Q_{1}^{i-1},0,0_{i+1}^{N}\right) G_{N}\cdot V_{1}^{N}\rangle ||Q_{1}^{i-1},0,Q_{i+1}^{N}\rangle \right) \end{aligned} \end{aligned}$$
(C25)

For Eq. (C24), we exchange summation order and obtain

$$\begin{aligned} \begin{aligned} \begin{aligned}&\rho _{V_{1}^{N},R_{1}^{i-1}}^{(0)}\\&\quad =q\sum _{V_{1}^{N}\in \mathcal {Y}^{N}}\left[ \sum _{Q_{i+1}^{N}\in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) Pr_{N}\left( |V_{1}^{N}\rangle ||0_{1}^{i-1},0,Q_{i+1}^{N}\rangle \right) \right. \\&\qquad \times \left. \sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}}\sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) } |(Q_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N},R_{1}^{i-1}\rangle \right. \\&\qquad \times \left. \sum _{\tilde{Q}_{1}^{i-1} =\tilde{R}_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |\tilde{Q}_{1}^{i-1}\rangle \langle \tilde{Q}_{1}^{i-1}|\right) } \langle (\tilde{Q}_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N},\tilde{R}_{1}^{i-1}|\right] \\&\quad =q\sum _{m=0}^{2^{N}-1}Pr_{N}^{(i)}\left( |m^{\prime }\rangle ||0\rangle \right) |m^{\prime }\rangle \langle m^{\prime }| \end{aligned} \end{aligned} \end{aligned}$$
(C26)

where

$$\begin{aligned} \begin{aligned} |m^{\prime }\rangle =\sum _{Q_{1}^{i-1}=R_{1}^{i-1} \in \mathcal {X}^{i-1}} \sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) }|(Q_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N},R_{1}^{i-1}\rangle \end{aligned} \end{aligned}$$
(C27)

and

$$\begin{aligned} \begin{aligned} Pr_{N}^{(i)}\left( |m^{\prime }\rangle ||0\rangle \right) =\sum _{Q_{i+1}^{N}\in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) Pr_{N}\left( |V_{1}^{N}\rangle ||0_{1}^{i-1},0,Q_{i+1}^{N}\rangle \right) \end{aligned} \end{aligned}$$
(C28)

\(Pr_{N}^{(i)}\left( |m^{\prime }\rangle ||0\rangle \right) \) is the transition probability which means the probability of the input state \(|0\rangle \langle 0|\) changing into \(|m^{\prime }\rangle \langle m^{\prime }|\). Using Eq. (C25), then Eq. (C28) can be rewritten as

$$\begin{aligned} \begin{aligned} Pr_{N}^{(i)}\left( |m^{\prime }\rangle ||0\rangle \right)&=\sum _{Q_{1}^{i-1}\in \mathcal {X}^{i-1}}\frac{1}{2^{i-1}}\sum _{Q_{i+1}^{N}\in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) \\&\quad \times Pr_{N}\left( |\left( Q_{1}^{i-1},0,0_{i+1}^{N}\right) G_{N}\cdot V_{1}^{N}\rangle ||Q_{1}^{i-1},0,Q_{i+1}^{N}\rangle \right) \end{aligned} \end{aligned}$$
(C29)

Using the same method, Eq. (C20) can be easily proved, and we have

$$\begin{aligned} \begin{aligned} Pr_{N}^{(i)}\left( |m^{\prime }\rangle ||1\rangle \right)&=\sum _{Q_{1}^{i-1}\in \mathcal {X}^{i-1}}\frac{1}{2^{i-1}}\sum _{Q_{i+1}^{N}\in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) \\&\quad \times Pr_{N}\left( |\left( Q_{1}^{i-1},0,0_{i+1}^{N}\right) G_{N}\cdot V_{1}^{N}\rangle ||Q_{1}^{i-1},1,Q_{i+1}^{N}\rangle \right) \\&=\sum _{Q_{i+1}^{N}\in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) Pr_{N}\left( |V_{1}^{N}\rangle ||0_{1}^{i-1},1,Q_{i+1}^{N}\rangle \right) \end{aligned} \end{aligned}$$
(C30)

Thus, the basis transition probabilities can be uniformly expressed as

$$\begin{aligned} \begin{aligned} Pr_{N}^{(i)}\left( |m^{\prime }\rangle ||Q_{i}\rangle \right)&=\sum _{Q_{1}^{i-1}\in \mathcal {X}^{i-1}}\frac{1}{2^{i-1}}\sum _{Q_{i+1}^{N}\in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) \\&\quad \times Pr_{N}\left( |\left( Q_{1}^{i-1},0,0_{i+1}^{N}\right) G_{N}\cdot V_{1}^{N}\rangle ||Q_{1}^{i-1},Q_{i},Q_{i+1}^{N}\rangle \right) \\&=\sum _{Q_{i+1}^{N} \in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) Pr_{N}\left( |V_{1}^{N}\rangle ||0_{1}^{i-1},Q_{i},Q_{i+1}^{N}\rangle \right) \end{aligned} \end{aligned}$$
(C31)

3. The third step of the proof: use Arikan’s method to prove the basis transition probability matrix is symmetric.

Next, we will prove that the basis transition probability matrix is symmetric. We will refer to the proof method which Arikan used to prove that classical coordinate channels \(\{W_{N}^{(i)}\}\) are symmetric if the primal binary-input discrete memoryless channel W is symmetric.

By Theorem 8, we have

$$\begin{aligned} \begin{aligned}&Pr_{N}\left( |\left( Q_{1}^{i-1},0,0_{i+1}^{N}\right) G_{N}\cdot V_{1}^{N}\rangle ||Q_{1}^{i-1},Q_{i},Q_{i+1}^{N}\rangle \right) \\&\quad =Pr_{N}\left( |(a_{1}^{i-1},1,a_{i+1}^{N})G_{N}\cdot (Q_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N}\rangle |\right. \\&\quad \left. |(Q_{1}^{i-1},Q_{i},Q_{i+1}^{N})\oplus (a_{1}^{i-1},1,a_{i+1}^{N})\rangle \right) \end{aligned} \end{aligned}$$
(C32)

for arbitrary \((a_{1}^{i-1},1,a_{i+1}^{N})\in \mathcal {X}^{N}\), and thus, Eq. (C31) can be rewritten as

$$\begin{aligned}{} & {} Pr_{N}^{(i)}\left( |m^{\prime }\rangle ||Q_{i}\rangle \right) \nonumber \\{} & {} \quad =\sum _{Q_{1}^{i-1}\in \mathcal {X}^{i-1}}\frac{1}{2^{i-1}}\sum _{Q_{i+1}^{N}\in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) \nonumber \\{} & {} \qquad \times Pr_{N}\left( |(Q_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N}\rangle ||Q_{1}^{i-1},Q_{i},Q_{i+1}^{N}\rangle \right) \nonumber \\{} & {} \quad =\sum _{Q_{1}^{i-1}\in \mathcal {X}^{i-1}}\frac{1}{2^{i-1}}\sum _{Q_{i+1}^{N}\in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) \nonumber \\{} & {} \qquad \times Pr_{N}\left( |(a_{1}^{i-1},1,a_{i+1}^{N})G_{N}\cdot (Q_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N}\rangle |\right. \nonumber \\{} & {} \qquad \left. |(Q_{1}^{i-1},Q_{i},Q_{i+1}^{N})\oplus (a_{1}^{i-1},1,a_{i+1}^{N})\rangle \right) \nonumber \\{} & {} \quad =\sum _{Q_{1}^{i-1}\in \mathcal {X}^{i-1}}\frac{1}{2^{i-1}}\sum _{Q_{i+1}^{N}\in \mathcal {X}^{N-i}}Pr\left( |Q_{i+1}^{N}\rangle \langle Q_{i+1}^{N}|\right) \nonumber \\{} & {} \qquad \times Pr_{N}\left( |(a_{1}^{i-1},1,a_{i+1}^{N}\oplus Q_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N}\rangle |\right. \nonumber \\{} & {} \qquad \left. |(Q_{1}^{i-1},Q_{i},Q_{i+1}^{N})\oplus (a_{1}^{i-1},1,a_{i+1}^{N})\rangle \right) \nonumber \\{} & {} \quad =Pr_{N}^{(i)}\left( \sum _{Q_{1}^{i-1} =R_{1}^{i-1}\in \mathcal {X}^{i-1}}\sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) }\right. \nonumber \\{} & {} \qquad \times \left. |(a_{1}^{i-1},1,a_{i+1}^{N}\oplus Q_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N},R_{1}^{i-1}\oplus a_{1}^{i-1}\rangle ||Q_{i}\oplus 1\rangle \right) \nonumber \\ \end{aligned}$$
(C33)

Substitute Eq. (C21) into \(Pr_{N}^{(i)}\left( |m^{\prime }\rangle ||Q_{i}\rangle \right) \), and connect with Eq. (C33), we have

$$\begin{aligned} \begin{aligned}&Pr_{N}^{(i)}\left( |m^{\prime }\rangle ||Q_{i}\rangle \right) \\&\quad =Pr_{N}^{(i)}\left( \sum _{\begin{array}{c} Q_{1}^{i-1}\\ =R_{1}^{i-1}\\ \in \mathcal {X}^{i-1} \end{array}} \sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) }|\left( Q_{1}^{i-1}, 0,0_{i+1}^{N}\right) G_{N} \cdot V_{1}^{N}, R_{1}^{i-1}\rangle ||Q_{i}\rangle \right) \\&\quad =Pr_{N}^{(i)}\left( \sum _{Q_{1}^{i-1}=R_{1}^{i-1}\in \mathcal {X}^{i-1}}\sqrt{Pr\left( |Q_{1}^{i-1}\rangle \langle Q_{1}^{i-1}|\right) }\right. \\&\qquad \times \left. |(a_{1}^{i-1},1,a_{i+1}^{N}\oplus Q_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot V_{1}^{N},R_{1}^{i-1}\oplus a_{1}^{i-1}\rangle ||Q_{i}\oplus 1\rangle \right) \end{aligned} \end{aligned}$$
(C34)

Here, we take \(a_{1}^{N}= (a_{1}^{i-1},1,a_{i+1}^{N})\), and the proof is completed. Equation (C34) means arbitrary row of the BTPM of the quantum coordinate channel \(\mathcal {E}_{N}^{(i)}\) is a permutation of the other row. \(\square \)

Appendix D: Proof of Proposition 11

In this section, we prove Proposition 11 that we can derive \(Pr_{N}^{(i)}\left( |m\rangle ||Q_{i}\rangle \right) \) from the TPM of classical coordinate channels \(W_{N}^{(i)}\).

Proof

According to Arikan’s theorem [6], the transition probabilities of classical coordinate channels \(\{W_{N}^{(i)}\}\) are

$$\begin{aligned} \begin{aligned}&W_{N}^{(i)}\left( y_{1}^{N}, u_{1}^{i-1} \mid u_{i}\right) \\&\quad =\sum _{u_{i+1}^{N} \in \mathcal {X}^{N-i}} \frac{1}{2^{N-1}} W_{N}\left( y_{1}^{N}|u_{1}^{N}\right) \\&\quad =\sum _{u_{i+1}^{N} \in \mathcal {X}^{N-i}} \frac{1}{2^{N-1}} W_{N}\left( a_{1}^{N}G_{N}\cdot y_{1}^{N}|u_{1}^{N}\oplus a_{1}^{N}\right) \\&\quad =W_{N}^{(i)}\left( a_{1}^{N}G_{N}\cdot y_{1}^{N}, u_{1}^{i-1}\oplus a_{1}^{i-1}|u_{i}\oplus a_{i}\right) \end{aligned} \end{aligned}$$
(D35)

and Arikan has proved that classical combined channel \(W_{N}\) and classical coordinate channels \(\{W_{N}^{(i)}\}\) are all symmetric, which satisfies

$$\begin{aligned} \begin{aligned}&W_{N}\left( y_{1}^{N} \mid 0_{1}^{i-1},u_{i},u_{i+1}^{N}\right) =W_{N}\left( \left( u_{1}^{i-1},0,0_{i+1}^{N}\right) G_{N} \cdot y_{1}^{N} \mid u_{1}^{i-1},u_{i},u_{i+1}^{N}\right) \end{aligned} \end{aligned}$$
(D36)

and

$$\begin{aligned} \begin{aligned}&W_{N}^{(i)}\left( y_{1}^{N}, 0_{1}^{i-1} \mid u_{i}\right) =W_{N}^{(i)}\left( \left( u_{1}^{i-1},0,0_{i+1}^{N}\right) G_{N} \cdot y_{1}^{N}, 0_{1}^{i-1} \oplus u_{1}^{i-1} \mid u_{i}\right) \end{aligned} \end{aligned}$$
(D37)

for all \(u_{1}^{i-1}\in \mathcal {X}^{i-1}\).

Using Theorem 8, Proposition 10 and Eq. (D36), we have

$$\begin{aligned} \begin{aligned} Pr_{N}\left( |V_{1}^{N}\rangle ||0_{1}^{i-1}, Q_{i}, Q_{i+1}^{N}\rangle \right)&=W_{N}\left( y_{1}^{N} \mid 0_{1}^{i-1},u_{i},u_{i+1}^{N}\right) \\&=W_{N}\left( \left( u_{1}^{i-1},0,0_{i+1}^{N}\right) G_{N} \cdot y_{1}^{N} \mid u_{1}^{i-1},u_{i},u_{i+1}^{N}\right) \\&=Pr_{N}\left( |(Q_{1}^{i-1}, 0, 0_{i+1}^{N}) G_{N}\cdot V_{1}^{N}\rangle ||Q_{1}^{i-1}, Q_{i}, Q_{i+1}^{N}\rangle \right) \end{aligned} \end{aligned}$$
(D38)

for all \(V_{1}^{N}=y_{1}^{N} \in \mathcal {Y}^{N}\) and \(Q_{1}^{N}=u_{1}^{N} \in \mathcal {X}^{N}\).

Substitute Eqs. (D38) and (D37) into Eq. (51), we have

$$\begin{aligned} Pr_{N}^{(i)}\left( |m\rangle ||Q_{i}\rangle \right)= & {} \sum _{u_{1}^{i-1}\in \mathcal {X}^{i-1}}\frac{1}{2^{N-1}}\nonumber \\{} & {} \times \sum _{u_{i+1}^{N}\in \mathcal {X}^{N-i}}W_{N}\left( (u_{1}^{i-1},0,0_{i+1}^{N})G_{N}\cdot y_{1}^{N}|u_{1}^{i-1},u_{i},u_{i+1}^{N}\right) \nonumber \\= & {} \frac{2^{i-1}}{2^{N-1}}\sum _{u_{i+1}^{N}\in \mathcal {X}^{N-i}}W_{N}\left( y_{1}^{N}|0_{1}^{i-1},u_{i},u_{i+1}^{N}\right) \nonumber \\= & {} 2^{i-1}W_{N}^{(i)}\left( y_{1}^{N}, 0_{1}^{i-1}|u_{i}\right) \end{aligned}$$
(D39)

Equation (D39) means we can derive \(Pr_{N}^{(i)}\left( |m\rangle ||Q_{i}\rangle \right) \) from the TPM of classical coordinate channels \(W_{N}^{(i)}\), which completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Z., Liang, Z. & Wang, X. Channel polarization of two-dimensional-input quantum symmetric channels. Quantum Inf Process 22, 209 (2023). https://doi.org/10.1007/s11128-023-03949-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03949-8

Keywords

Navigation