Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A GNN-based predictor for quantum architecture search

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The performance of the variational quantum algorithm (VQA) highly depends on the structure of the quantum circuit. Quantum architecture search (QAS) algorithm aims to automatically search out high-performance quantum circuits for given VQA tasks. However, current QAS algorithms need to calculate the ground-truth performances of a large number of quantum circuits during the searching process, especially for large-scale quantum circuits, which is very time-consuming. In this paper, we propose a predictor based on a graph neural network (GNN), which can largely reduce the computational complexity of the performance evaluation and accelerate the QAS algorithm. We denote the quantum circuit with a directed acyclic graph (DAG), which can well represent the structural and topological information of the quantum circuit. A GNN-based encoder with an asynchronous message-passing scheme is used to encode discrete circuit structures into continuous feature representations, which mimics the computational routine of a quantum circuit on the quantum data. Simulations on the 6-qubit and 10-qubit variational quantum eigensolver (VQE) show that the proposed predictor can learn the latent relationship between circuit structures and their performances. It effectively filters out poorly performing circuits and samples the most promising quantum circuits for evaluation, which avoids a significant computational cost in the performance evaluation and largely improves the sample efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

No data were used during the study. All codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  2. Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., et al.: Variational quantum algorithms. Nat. Rev. Phys. 1–20 (2021)

  3. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1): 1–7 (2014)

  4. Higgott, O., Wang, D., Brierley, S.: Variational quantum computation of excited states. Quantum 3, 156 (2019)

    Article  Google Scholar 

  5. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017)

    Article  ADS  Google Scholar 

  6. Jones, T., Endo, S., McArdle, S., Yuan, X., Benjamin, S.C.: Variational quantum algorithms for discovering Hamiltonian spectra. Phys. Rev. A 99(6), 062304 (2019)

    Article  ADS  Google Scholar 

  7. Moussa, C., Calandra, H., Dunjko, V.: To quantum or not to quantum: towards algorithm selection in near-term quantum optimization. Quant. Sci. Technol. 5(4), 044009 (2020)

    Article  ADS  Google Scholar 

  8. McArdle, S., Jones, T., Endo, S., Li, Y., Benjamin, S.C., Yuan, X.: Variational ansatz-based quantum simulation of imaginary time evolution. NPJ Quant. Inf. 5(1), 1–6 (2019)

    Google Scholar 

  9. Yao, Y.-X., Gomes, N., Zhang, F., Wang, C.-Z., Ho, K.-M., Iadecola, T., Orth, P.P.: Adaptive variational quantum dynamics simulations. PRX Quant. 2(3), 030307 (2021)

    Article  ADS  Google Scholar 

  10. He, Z., Li, L., Zheng, S., Li, Y., Situ, H.: Variational quantum compiling with double q-learning. New J. Phys. 23(3), 033002 (2021)

    Article  ADS  Google Scholar 

  11. Khatri, S., LaRose, R., Poremba, A., Cincio, L., Sornborger, A.T., Coles, P.J.: Quantum-assisted quantum compiling. Quantum 3, 140 (2019)

    Article  Google Scholar 

  12. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv:1411.4028 (2014)

  13. Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann, D., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11(1), 1–6 (2020)

    Article  Google Scholar 

  14. Li, Y., Zhou, R.-G., Xu, R., Luo, J., Hu, W.: A quantum deep convolutional neural network for image recognition. Quant. Sci. Technol. 5(4), 044003 (2020)

    Article  ADS  Google Scholar 

  15. Niu, M.Y., Zlokapa, A., Broughton, M., Boixo, S., Mohseni, M., Smelyanskyi, V., Neven, H.: Entangling quantum generative adversarial networks. Phys. Rev. Lett. 128(22), 220505 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  16. Situ, H., He, Z., Wang, Y., Li, L., Zheng, S.: Quantum generative adversarial network for generating discrete distribution. Inf. Sci. 538, 193–208 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12(1), 1–12 (2021)

    Article  Google Scholar 

  18. McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9(1), 1–6 (2018)

    Article  ADS  Google Scholar 

  19. Pesah, A., Cerezo, M., Wang, S., Volkoff, T., Sornborger, A.T., Coles, P.J.: Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11(4), 041011 (2021)

    Google Scholar 

  20. Sharma, K., Cerezo, M., Cincio, L., Coles, P.J.: Trainability of dissipative perceptron-based quantum neural networks. Phys. Rev. Lett. 128(18), 180505 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  21. Chivilikhin, D., Samarin, A., Ulyantsev, V., Iorsh, I., Oganov, A., Kyriienko, O.: Mog-vqe: Multiobjective genetic variational quantum eigensolver. arXiv:2007.04424 (2020)

  22. Cincio, L., Rudinger, K., Sarovar, M., Coles, P.J.: Machine learning of noise-resilient quantum circuits. PRX Quant. 2(1), 010324 (2021)

    Article  Google Scholar 

  23. Grimsley, H.R., Economou, S.E., Barnes, E., Mayhall, N.J.: An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10(1), 1–9 (2019)

    Article  Google Scholar 

  24. Li, L., Fan, M., Coram, M., Riley, P., Leichenauer, S., et al.: Quantum optimization with a novel Gibbs objective function and ansatz architecture search. Phys. Rev. Res. 2(2), 023074 (2020)

    Article  Google Scholar 

  25. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98(3), 032309 (2018)

    Article  ADS  Google Scholar 

  26. Zhang, S.-X., Hsieh, C.-Y., Zhang, S., Yao, H.: Differentiable quantum architecture search. Quant. Sci. Technol. 7(4), 045023 (2022)

    Article  ADS  Google Scholar 

  27. Zhang, S.-X., Hsieh, C.-Y., Zhang, S., Yao, H.: Neural predictor based quantum architecture search. Mach. Learn. Sci. Technol. 2(4), 045027 (2021)

    Article  ADS  Google Scholar 

  28. Du, Y., Huang, T., You, S., Hsieh, M.-H., Tao, D.: Quantum circuit architecture search for variational quantum algorithms. NPJ Quant. Inf. 8(1), 1–8 (2022)

    Google Scholar 

  29. He, Z., Chen, C., Li, L., Zheng, S., Situ, H.: Quantum architecture search with meta-learning. Adv. Quant. Technol. 5(8), 2100134 (2022)

    Article  Google Scholar 

  30. He, Z., Su, J., Chen, C., Pan, M., Situ, H.: Search space pruning for quantum architecture search. Eur. Phys. J. Plus 137(4), 491 (2022)

    Article  Google Scholar 

  31. Ostaszewski, M., Grant, E., Benedetti, M.: Structure optimization for parameterized quantum circuits. Quantum 5, 391 (2021)

    Article  Google Scholar 

  32. Huang, Y., Li, Q., Hou, X., Wu, R., Yung, M.-H., Bayat, A., Wang, X.: Robust resource-efficient quantum variational ansatz through an evolutionary algorithm. Phys. Rev. A 105(5), 052414 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  33. Rattew, A.G., Hu, S., Pistoia, M., Chen, R., Wood, S.: A domain-agnostic, noise-resistant, hardware-efficient evolutionary variational quantum eigensolver. arXiv:1910.09694 (2019)

  34. Zhang, Y.-H., Zheng, P.-L., Zhang, Y., Deng, D.-L.: Topological quantum compiling with reinforcement learning. Phys. Rev. Lett. 125(17), 170501 (2020)

    Article  ADS  Google Scholar 

  35. Ostaszewski, M., Trenkwalder, L.M., Masarczyk, W., Scerri, E., Dunjko, V.: Reinforcement learning for optimization of variational quantum circuit architectures. Adv. Neural Inf. Process. Syst. (2021)

  36. Kuo, E.-J., Fang, Y.-L.L., Chen, S.Y.-C.: Quantum architecture search via deep reinforcement learning. arXiv:2104.07715 (2021)

  37. Yu, X.-D., Shang, J., Gühne, O.: Statistical methods for quantum state verification and fidelity estimation. Adv. Quant. Technol. 5(5), 2100126 (2022)

    Article  Google Scholar 

  38. Zhang, X., Luo, M., Wen, Z., Feng, Q., Pang, S., Luo, W., Zhou, X.: Direct fidelity estimation of quantum states using machine learning. Phys. Rev. Lett. 127(13), 130503 (2021)

    Article  ADS  Google Scholar 

  39. Liu, J., Zhou, H.: Reliability modeling of nisq-era quantum computers. In: IEEE international symposium on workload characterization, pp. 94–105 (2020). IEEE

  40. Wang, H., Liu, P., Cheng, J., Liang, Z., Gu, J., Li, Z., Ding, Y., Jiang, W., Shi, Y., Qian, X., et al.: Quest: graph transformer for quantum circuit reliability estimation. arXiv:2210.16724 (2022)

  41. Sohrabizadeh, A., Bai, Y., Sun, Y., Cong, J.: Enabling automated FPGA accelerator optimization using graph neural networks. arXiv:2111.08848 (2021)

  42. Wang, H., Ding, Y., Gu, J., Lin, Y., Pan, D.Z., Chong, F.T., Han, S.: Quantumnas: Noise-adaptive search for robust quantum circuits. In: International symposium on high-performance computer architecture (HPCA), pp. 692–708 (2022). IEEE

  43. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:1412.3555 (2014)

  44. Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Alam, M.S., Ahmed, S., Arrazola, J.M., Blank, C., Delgado, A., Jahangiri, S., et al.: Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv:1811.04968 (2018)

  45. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980 (2014)

Download references

Acknowledgements

This work is supported by Guangdong Basic and Applied Basic Research Foundation (Nos. 2021A1515012138, 2022A1515140116, 2021A1515012639), Key Platform, Research Project of Education Department of Guangdong Province (No. 2020KTSCX132), Key Research Project of Universities in Guangdong Province (No. 2019KZDXM007), National Natural Science Foundation of China (No.  61972091) and Student Academic Foundation of Foshan University (No. xsjj202202kjb13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuangtao Chen.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Pseudocode of DAG representation

figure a

Appendix B: Hyperparameters in the simulations

We implement the simulations on a classical computer with a CPU i9-10900K using PennyLane[44], which includes a wide range of quantum machine learning libraries. The predictor is trained with Adam optimizer [45]. The hyperparameters of the proposed predictor for 6-qubit and 10-qubit VQEs are shown in Table and Table , respectively.

Table 1 The hyperparameters of the proposed predictor for 6-qubit VQE
Table 2 The hyperparameters of the proposed predictor for 10-qubit VQE

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Zhang, X., Chen, C. et al. A GNN-based predictor for quantum architecture search. Quantum Inf Process 22, 128 (2023). https://doi.org/10.1007/s11128-023-03881-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03881-x

Keywords

Navigation