Abstract
The performance of the variational quantum algorithm (VQA) highly depends on the structure of the quantum circuit. Quantum architecture search (QAS) algorithm aims to automatically search out high-performance quantum circuits for given VQA tasks. However, current QAS algorithms need to calculate the ground-truth performances of a large number of quantum circuits during the searching process, especially for large-scale quantum circuits, which is very time-consuming. In this paper, we propose a predictor based on a graph neural network (GNN), which can largely reduce the computational complexity of the performance evaluation and accelerate the QAS algorithm. We denote the quantum circuit with a directed acyclic graph (DAG), which can well represent the structural and topological information of the quantum circuit. A GNN-based encoder with an asynchronous message-passing scheme is used to encode discrete circuit structures into continuous feature representations, which mimics the computational routine of a quantum circuit on the quantum data. Simulations on the 6-qubit and 10-qubit variational quantum eigensolver (VQE) show that the proposed predictor can learn the latent relationship between circuit structures and their performances. It effectively filters out poorly performing circuits and samples the most promising quantum circuits for evaluation, which avoids a significant computational cost in the performance evaluation and largely improves the sample efficiency.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
No data were used during the study. All codes that support the findings of this study are available from the corresponding author upon reasonable request.
References
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., et al.: Variational quantum algorithms. Nat. Rev. Phys. 1–20 (2021)
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1): 1–7 (2014)
Higgott, O., Wang, D., Brierley, S.: Variational quantum computation of excited states. Quantum 3, 156 (2019)
Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017)
Jones, T., Endo, S., McArdle, S., Yuan, X., Benjamin, S.C.: Variational quantum algorithms for discovering Hamiltonian spectra. Phys. Rev. A 99(6), 062304 (2019)
Moussa, C., Calandra, H., Dunjko, V.: To quantum or not to quantum: towards algorithm selection in near-term quantum optimization. Quant. Sci. Technol. 5(4), 044009 (2020)
McArdle, S., Jones, T., Endo, S., Li, Y., Benjamin, S.C., Yuan, X.: Variational ansatz-based quantum simulation of imaginary time evolution. NPJ Quant. Inf. 5(1), 1–6 (2019)
Yao, Y.-X., Gomes, N., Zhang, F., Wang, C.-Z., Ho, K.-M., Iadecola, T., Orth, P.P.: Adaptive variational quantum dynamics simulations. PRX Quant. 2(3), 030307 (2021)
He, Z., Li, L., Zheng, S., Li, Y., Situ, H.: Variational quantum compiling with double q-learning. New J. Phys. 23(3), 033002 (2021)
Khatri, S., LaRose, R., Poremba, A., Cincio, L., Sornborger, A.T., Coles, P.J.: Quantum-assisted quantum compiling. Quantum 3, 140 (2019)
Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv:1411.4028 (2014)
Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann, D., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11(1), 1–6 (2020)
Li, Y., Zhou, R.-G., Xu, R., Luo, J., Hu, W.: A quantum deep convolutional neural network for image recognition. Quant. Sci. Technol. 5(4), 044003 (2020)
Niu, M.Y., Zlokapa, A., Broughton, M., Boixo, S., Mohseni, M., Smelyanskyi, V., Neven, H.: Entangling quantum generative adversarial networks. Phys. Rev. Lett. 128(22), 220505 (2022)
Situ, H., He, Z., Wang, Y., Li, L., Zheng, S.: Quantum generative adversarial network for generating discrete distribution. Inf. Sci. 538, 193–208 (2020)
Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12(1), 1–12 (2021)
McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9(1), 1–6 (2018)
Pesah, A., Cerezo, M., Wang, S., Volkoff, T., Sornborger, A.T., Coles, P.J.: Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11(4), 041011 (2021)
Sharma, K., Cerezo, M., Cincio, L., Coles, P.J.: Trainability of dissipative perceptron-based quantum neural networks. Phys. Rev. Lett. 128(18), 180505 (2022)
Chivilikhin, D., Samarin, A., Ulyantsev, V., Iorsh, I., Oganov, A., Kyriienko, O.: Mog-vqe: Multiobjective genetic variational quantum eigensolver. arXiv:2007.04424 (2020)
Cincio, L., Rudinger, K., Sarovar, M., Coles, P.J.: Machine learning of noise-resilient quantum circuits. PRX Quant. 2(1), 010324 (2021)
Grimsley, H.R., Economou, S.E., Barnes, E., Mayhall, N.J.: An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10(1), 1–9 (2019)
Li, L., Fan, M., Coram, M., Riley, P., Leichenauer, S., et al.: Quantum optimization with a novel Gibbs objective function and ansatz architecture search. Phys. Rev. Res. 2(2), 023074 (2020)
Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98(3), 032309 (2018)
Zhang, S.-X., Hsieh, C.-Y., Zhang, S., Yao, H.: Differentiable quantum architecture search. Quant. Sci. Technol. 7(4), 045023 (2022)
Zhang, S.-X., Hsieh, C.-Y., Zhang, S., Yao, H.: Neural predictor based quantum architecture search. Mach. Learn. Sci. Technol. 2(4), 045027 (2021)
Du, Y., Huang, T., You, S., Hsieh, M.-H., Tao, D.: Quantum circuit architecture search for variational quantum algorithms. NPJ Quant. Inf. 8(1), 1–8 (2022)
He, Z., Chen, C., Li, L., Zheng, S., Situ, H.: Quantum architecture search with meta-learning. Adv. Quant. Technol. 5(8), 2100134 (2022)
He, Z., Su, J., Chen, C., Pan, M., Situ, H.: Search space pruning for quantum architecture search. Eur. Phys. J. Plus 137(4), 491 (2022)
Ostaszewski, M., Grant, E., Benedetti, M.: Structure optimization for parameterized quantum circuits. Quantum 5, 391 (2021)
Huang, Y., Li, Q., Hou, X., Wu, R., Yung, M.-H., Bayat, A., Wang, X.: Robust resource-efficient quantum variational ansatz through an evolutionary algorithm. Phys. Rev. A 105(5), 052414 (2022)
Rattew, A.G., Hu, S., Pistoia, M., Chen, R., Wood, S.: A domain-agnostic, noise-resistant, hardware-efficient evolutionary variational quantum eigensolver. arXiv:1910.09694 (2019)
Zhang, Y.-H., Zheng, P.-L., Zhang, Y., Deng, D.-L.: Topological quantum compiling with reinforcement learning. Phys. Rev. Lett. 125(17), 170501 (2020)
Ostaszewski, M., Trenkwalder, L.M., Masarczyk, W., Scerri, E., Dunjko, V.: Reinforcement learning for optimization of variational quantum circuit architectures. Adv. Neural Inf. Process. Syst. (2021)
Kuo, E.-J., Fang, Y.-L.L., Chen, S.Y.-C.: Quantum architecture search via deep reinforcement learning. arXiv:2104.07715 (2021)
Yu, X.-D., Shang, J., Gühne, O.: Statistical methods for quantum state verification and fidelity estimation. Adv. Quant. Technol. 5(5), 2100126 (2022)
Zhang, X., Luo, M., Wen, Z., Feng, Q., Pang, S., Luo, W., Zhou, X.: Direct fidelity estimation of quantum states using machine learning. Phys. Rev. Lett. 127(13), 130503 (2021)
Liu, J., Zhou, H.: Reliability modeling of nisq-era quantum computers. In: IEEE international symposium on workload characterization, pp. 94–105 (2020). IEEE
Wang, H., Liu, P., Cheng, J., Liang, Z., Gu, J., Li, Z., Ding, Y., Jiang, W., Shi, Y., Qian, X., et al.: Quest: graph transformer for quantum circuit reliability estimation. arXiv:2210.16724 (2022)
Sohrabizadeh, A., Bai, Y., Sun, Y., Cong, J.: Enabling automated FPGA accelerator optimization using graph neural networks. arXiv:2111.08848 (2021)
Wang, H., Ding, Y., Gu, J., Lin, Y., Pan, D.Z., Chong, F.T., Han, S.: Quantumnas: Noise-adaptive search for robust quantum circuits. In: International symposium on high-performance computer architecture (HPCA), pp. 692–708 (2022). IEEE
Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:1412.3555 (2014)
Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Alam, M.S., Ahmed, S., Arrazola, J.M., Blank, C., Delgado, A., Jahangiri, S., et al.: Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv:1811.04968 (2018)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980 (2014)
Acknowledgements
This work is supported by Guangdong Basic and Applied Basic Research Foundation (Nos. 2021A1515012138, 2022A1515140116, 2021A1515012639), Key Platform, Research Project of Education Department of Guangdong Province (No. 2020KTSCX132), Key Research Project of Universities in Guangdong Province (No. 2019KZDXM007), National Natural Science Foundation of China (No. 61972091) and Student Academic Foundation of Foshan University (No. xsjj202202kjb13).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no competing interests to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A: Pseudocode of DAG representation
Appendix B: Hyperparameters in the simulations
We implement the simulations on a classical computer with a CPU i9-10900K using PennyLane[44], which includes a wide range of quantum machine learning libraries. The predictor is trained with Adam optimizer [45]. The hyperparameters of the proposed predictor for 6-qubit and 10-qubit VQEs are shown in Table and Table , respectively.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
He, Z., Zhang, X., Chen, C. et al. A GNN-based predictor for quantum architecture search. Quantum Inf Process 22, 128 (2023). https://doi.org/10.1007/s11128-023-03881-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-03881-x