Abstract
Let \(m \ge 1\) be a fixed integer and q be an odd prime such that \(q~=~p^m\). The aim of this paper is to study cyclic codes over a non-chain ring \(R~=~F_q+vF_q+v^2F_q\), where \(v^3~=~v\). Precisely, we describe better quantum error-correcting codes than the previously known quantum error-correcting codes over \(F_q\). Moreover, as an application, we construct MDS LCD codes and prove that the Gray image of an LCD code of length n over R is also an LCD code of length 3n over \(F_q\).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability statement:
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
References
Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over F3+ vF3. Int. J. Quantum Inf. 12(06), 1450042 (2014)
Ashraf, M., Mohammad, G.: Construction of quantum codes from cyclic codes over \(F_p + vF_p\). Int. J. Inf. Coding Theory 3(2), 137–144 (2015)
Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \(F_q + uF_q + vF_q + uvF_q\). Quantum Inf. Process. 15(10), 4089–4098 (2016). https://doi.org/10.1007/s11128-016-1379-8
Ashraf, M., Mohammad, G.: Quantum codes over Fp from cyclic codes over \(\frac{F_p[u, v]}{\langle u^2-1, v^3-1, uv-vu \rangle }\). Cryptogr. Commun. 11, 325–335 (2019)
Ashraf, M., Mohammad, G.: On skew cyclic codes over \( F_q+ vF_q+ v^ 2F_q\). Tbilisi Math. J. 11(2), 35–45 (2018)
Ashraf, M., Khan, N., Mohammad, G.: New quantum and LCD codes over the finite field of odd characteristic. Int. J. Theor. Phys. 60, 2322–2332 (2021)
Aydin, N., Liu, P., Yoshino, B.: A database of quantum codes. Online available at http://quantumcodes.info/ (2021). Accessed 7 Aug 2021
Bag, T., Dinh, H.Q., Upadhyay, A.K., Yamaks, W.: New non-binary quantum codes from cyclic codes over product rings. IEEE Commun. Lett. 24(3), 486–490 (2020)
Bag, T., Upadhyay, A.K., Ashraf, M., Mohammad, G.: Quantum code from cyclic code over the ring \(F_p[u]/\langle u^3-u\rangle \). Asian-Eur. J. Math. 13(1), 2050008 (2020). https://doi.org/10.1142/S1793557120500084
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997)
Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error-correction via codes over \(GF (4)\). IEEE Trans. Inf Theory 44, 1369–1387 (1998)
Cengellenmis, Y.: On the cyclic codes over \(F_3 + vF_3\). Int. J. Algebra 4, 253–259 (2010)
Chen, B., Liu, H.: New constructions of MDS codes with complementary duals, https://arxiv.org/abs/1702.07831
Carlet, C., Mesnager, S., Tang, C., Qi, Y.: Euclidean and Hermitian LCD MDS codes. Des. Codes Cryptogr. 86(11), 2605–2618 (2018)
Dertli, A., Cengellenmis, Y., Eren, S.: On quantum codes obtained from cyclic codes over A2. Int. J. Quantum Inf. 13(3), 1550031 (2015)
Gao, J.: Some results on linear codes over \(F_p+uF_p+u^2F_p\). J. Appl. Math. Comput. 47(1–2), 473–485 (2014). https://doi.org/10.1007/s12190-014-0786-1
Gao, Y., Gao, J., Fu, F. W.: Quantum codes from cyclic codes over the ring Fq + vFq + ... + vrFq 447.AAECC 30, 161-174 (2019)
Grassl, M.: Code Tables: Bounds on the parameters of various types of codes, avaiblable at http://www.codetables.de/Accessed 7 April 2020
Grassl, M., Beth, T.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 55–64 (2004)
Gursoy, F., Siap, I., Yildiz, B.: Construction of skew cyclic codes over \(F_q + vF_q\). Adv. Math. Commun. 3, 313–322 (2014)
Islam, H., Prakash, O.: Construction of LCD and new quantum codes from cyclic codes over a finite non chain ring. Cryptogr. Commun. 14, 59–73 (2022). https://doi.org/10.1007/s12095-021-00516-9
Islam, H., Prakash, O.: New quantum and LCD codes over the finite field of even characteristic. Def. Sci. J. 71(5), 656–661 (2020)
Islam, H., Prakash, O.: Quantum codes from the cyclic codes over \(F_p[u,~v,~w]/\langle u^2-1,~v^2-1,~w^2-1,~uv-vu,~vw-wv,~uw-wu\rangle \). J. Appl. Math. Comput. 60, 625–635 (2019)
Islam, H., Prakash, O., Verma, R. K.: Quantum codes from the cyclic codes over \(F_p[v,~w]/\langle v^2-1,~w^2-1,~vw-wv \rangle \). Springer Proc. Math. Stat. 307. 10.1007/978-981-15-1157-8-6 (2019)
Kai, X., Zhu, S.: Quaternary construction of quantum codes from cyclic codes over \(F_4 + uF_4\). Int. J. Quantum Inf. 9, 689–700 (2011)
Liu, X., Liu, H.: LCD codes over finite chain rings. Finite Fields Appl. 34, 1–19 (2015)
Liu, X., Liu, H.: LCD codes over finite chain rings. Des. Codes Cryptogr. 88, 727–746 (2020)
Massey, J.L.: Linear codes with complementary duals. Discrete Math. 106, 337–342 (1992)
Qian, J.: Quantum codes from cyclic codes over \(F_2 +uF_2\). J. Inform. Comput. Sci. 6, 1715–1722 (2013)
Qian, J., Ma, W., Gou, W.: Quantum codes from cyclic codes over finite ring. Int. J. Quantum Inf. 7, 1355–1363 (2009)
Sharma, A., Bandi, R., Bhaintwal, M.: On quantum codes via cyclic codes of arbitrary length over \(F_4 + uF_4\). Discrete Math. Algorithms Appl. 10(3), 1850033 (2018)
Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A. 52, 2493–2496 (1995)
Steane, A.M.: Simple quantum error-correcting codes. Phys. Rev. A. 54, 4741–4751 (1996)
Yang, X., Massey, J.L.: The condition for a cyclic code to have a complementary dual. Discrete Math. 126, 391–393 (1994)
Yin, X., Ma, W.: Gray map and quantum codes over the ring \(F_2 + uF_2 + u^2F_2\). Int. Joint Conf. of IEEE Trustcom. 11 (2011)
Zhu, S., Wang, L.: A class of constacyclic codes over \(F_p +vF_p\) and its Gray image. Discrete Math. 311, 2677–2682 (2011)
Zhu, S., Wang, Y., Shi, M.: Some results on cyclic codes over \(F_2 + vF_2\). IEEE Trans. Inf. Theory 56(4), 2120–2128 (2010)
Acknowledgements
The authors are grateful to the anonymous reviewers who have given us very thoughtful and helpful comments to improve the manuscript. The research of first named author is supported by SERB-DST MATRIC Project (Grant No.: MTR/2019/000603), India.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ali, S., Mohammad, G., Jeelani et al. On quantum and LCD Codes Over The Ring \(F_q+vF_q+v^2F_q\). Quantum Inf Process 21, 306 (2022). https://doi.org/10.1007/s11128-022-03654-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03654-y