Abstract
Quantum-enhanced measurement can unambiguously discriminate coherent states with accuracy beyond what is fundamentally possible with conventional technologies. However, this advantage can be achieved only if quantum-enhanced measurement technologies are robust against to real-world imperfections. Improving resistance to real-world imperfections such as imperfect interference and dark count rate to enhance performance is of particular importance for an unambiguous state discrimination scenario. In this paper, we demonstrate an optimized decision strategy for quadrature phase-shift-keying unambiguous states discrimination, which to make the correct probability close to optimal. In addition, the error probability of the scheme is lower than ideal heterodyne measurement scheme when the average photon number of the signal is less than 4.5. The optimized decision strategy is based on the probability of photon-detection in measurement. Our demonstration shows that optimized decision strategy can provide practical advantages over conventional technologies for coherent optical communication.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.
References
Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N., Ralph, T., Shapiro, J., Lloyd, S.: Gaussian quantum information. Rev. Modern Phys. 84(2), 621–669 (2011)
Bennett C.H.: Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68 (1992)
Kok, P., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135 (2007)
Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96(1), 10401 (2012)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004). https://doi.org/10.1126/science.1104149
Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1(2), 231–252 (1969)
Du Ek, M., Jahma, M., Lütkenhaus, N.: Unambiguous state discrimination in quantum cryptography with weak coherent states. Phys. Rev. A 62(2), 117–134 (1999)
Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51(3), 1863–1869 (1995)
Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of Quantum Digital Signatures without the Requirement of Quantum Memory, Phys. Rev. Lett. 113(4) (2013)
Clarke, P.J., Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun. 3, 1174 (2011)
Chuang, I., Gottesman, D., Quantum digital signatures, US (2007)
Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A. 123(6), 257–259 (1987). https://doi.org/10.1016/0375-9601(87)90222-2
Chefles, A., Barnett, S.M.: Optimum unambiguous discrimination between linearly independent symmetric states. Phys. Lett. A. 250(4–6), 223–229 (1998). https://doi.org/10.1016/S0375-9601(98)00827-5
van Enk S.J.: Unambiguous state discrimination of coherent states with linear optics: Application to quantum cryptography, Phys. Rev. A. 66(4) (2002). https://doi.org/10.1103/PhysRevA.66.042313.
Wittmann, C., Andersen, U.L., Leuchs, G.: Discrimination of optical coherent states using a photon number resolving detector. J. Mod. Optic. 57, 213–217 (2010)
Becerra, F.E., Fan, J., Migdall, A.: Implementation of generalized quantum measurements for unambiguous discrimination of multiple non-orthogonal coherent states, Nat. Commun. 4(1) (2013). https://doi.org/10.1038/ncomms3028
Izumi, S., Neergaard-Nielsen, J.S., Andersen, U.L.: Adaptive generalized measurement for unambiguous state discrimination of quaternary phase-shift-keying Coherent States, PRX Quantum. 2(2) (2021). https://doi.org/10.1103/PRXQuantum.2.020305
Becerra, F.E., Fan, J., Baumgartner, G., Polyakov, S.V., Goldhar, J., Kosloski, J.T., Migdall, A.: M-ary-state phase-shift-keying discrimination below the homodyne limit, Phys. Rev. A Atomic Mole. Opt. Phys. 84(6) (2011). https://doi.org/10.1103/PhysRevA.84.062324
Takeoka, M., Sasaki, M., Luetkenhaus, N.: Binary projective measurement via linear optics and photon counting. Phys. Rev. Lett. 97(4), 40501–40502 (2006)
Kikuchi, K.: Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34(1), 157–179 (2016). https://doi.org/10.1109/JLT.2015.2463719
Yuan, R., Zhao, M., Han, S., Cheng, J.: Kennedy receiver using threshold detection and optimized displacement under thermal noise. IEEE Commun. Lett. 24(6), 1313–1317 (2020). https://doi.org/10.1109/LCOMM.2020.2980537
Becerra, F.E., Fan, J., Migdall, A.: Photon number resolution enables quantum receiver for realistic coherent optical communications. Nat. Photonics. 9(1), 48–53 (2015). https://doi.org/10.1038/nphoton.2014.280
Wittmann, C., Andersen, U.L., Leuchs, G.: Discrimination of optical coherent states using a photon number resolving detector. J. Mod. Optic. 57(3), 213–217 (2010). https://doi.org/10.1080/09500340903145031
Wittmann, C., Andersen, U.L., Takeoka, M., Sych, D., Leuchs, G.: Demonstration of coherent-state discrimination using a displacement-controlled photon-number-resolving detector. Phys. Rev. Lett. 104(10), 100505 (2010). https://doi.org/10.1103/PhysRevLett.104.100505
Pan, X., Wang, X., Tian, B., Wang, C., Zhang, H., Guizani, M.: Machine-learning-aided optical fiber communication system. IEEE Network 35(4), 136–142 (2021). https://doi.org/10.1109/MNET.011.2000676
Lohani, S., Glasser, R.T.: Coherent optical communications enhanced by machine intelligence. Mach. Learn. Sci. Technol. 1(3), 35006 (2020). https://doi.org/10.1088/2632-2153/ab9c3d
Li, J., Guo, Y., Wang, X., Xie, C., Zhang, L., Huang, D.: Discrete-modulated continuous-variable quantum key distribution with a machine-learning-based detector. Opt. Eng. 57(06), 1 (2018). https://doi.org/10.1117/1.OE.57.6.066109
Lohani, S., Knutson, E.M., Glasser, R.T.: Generative machine learning for robust free-space communication. Commun. Phys. (2020). https://doi.org/10.1038/s42005-020-00444-9
Acknowledgements
This research was supported in part by grants from the National Natural Science Foundation of China (62101559); National key basic research program of China (2021-JCJQ-JJ-0510); Scientific research program of National University of Defense Science and technology (ZK21-37). the Innovative Key Projects Promotion in Information and Communication College (No. YJKT-ZD-2105), the National University of Defense Technology under Grant No. 19-QNCXJ.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Guo, C., Wu, T., Li, K. et al. Optimized decision strategy for quadrature phase-shift-keying unambiguous states discrimination. Quantum Inf Process 21, 229 (2022). https://doi.org/10.1007/s11128-022-03566-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03566-x