Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Optimized decision strategy for quadrature phase-shift-keying unambiguous states discrimination

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum-enhanced measurement can unambiguously discriminate coherent states with accuracy beyond what is fundamentally possible with conventional technologies. However, this advantage can be achieved only if quantum-enhanced measurement technologies are robust against to real-world imperfections. Improving resistance to real-world imperfections such as imperfect interference and dark count rate to enhance performance is of particular importance for an unambiguous state discrimination scenario. In this paper, we demonstrate an optimized decision strategy for quadrature phase-shift-keying unambiguous states discrimination, which to make the correct probability close to optimal. In addition, the error probability of the scheme is lower than ideal heterodyne measurement scheme when the average photon number of the signal is less than 4.5. The optimized decision strategy is based on the probability of photon-detection in measurement. Our demonstration shows that optimized decision strategy can provide practical advantages over conventional technologies for coherent optical communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N., Ralph, T., Shapiro, J., Lloyd, S.: Gaussian quantum information. Rev. Modern Phys. 84(2), 621–669 (2011)

    Article  ADS  Google Scholar 

  2. Bennett C.H.: Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68 (1992)

  3. Kok, P., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135 (2007)

    Article  ADS  Google Scholar 

  4. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)

    Article  ADS  Google Scholar 

  5. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96(1), 10401 (2012)

    Article  MathSciNet  Google Scholar 

  6. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004). https://doi.org/10.1126/science.1104149

    Article  ADS  Google Scholar 

  7. Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1(2), 231–252 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  8. Du Ek, M., Jahma, M., Lütkenhaus, N.: Unambiguous state discrimination in quantum cryptography with weak coherent states. Phys. Rev. A 62(2), 117–134 (1999)

    Google Scholar 

  9. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51(3), 1863–1869 (1995)

    Article  ADS  Google Scholar 

  10. Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of Quantum Digital Signatures without the Requirement of Quantum Memory, Phys. Rev. Lett. 113(4) (2013)

  11. Clarke, P.J., Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun. 3, 1174 (2011)

    Article  ADS  Google Scholar 

  12. Chuang, I., Gottesman, D., Quantum digital signatures, US (2007)

  13. Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A. 123(6), 257–259 (1987). https://doi.org/10.1016/0375-9601(87)90222-2

    Article  ADS  MathSciNet  Google Scholar 

  14. Chefles, A., Barnett, S.M.: Optimum unambiguous discrimination between linearly independent symmetric states. Phys. Lett. A. 250(4–6), 223–229 (1998). https://doi.org/10.1016/S0375-9601(98)00827-5

    Article  ADS  Google Scholar 

  15. van Enk S.J.: Unambiguous state discrimination of coherent states with linear optics: Application to quantum cryptography, Phys. Rev. A. 66(4) (2002). https://doi.org/10.1103/PhysRevA.66.042313.

  16. Wittmann, C., Andersen, U.L., Leuchs, G.: Discrimination of optical coherent states using a photon number resolving detector. J. Mod. Optic. 57, 213–217 (2010)

    Article  ADS  Google Scholar 

  17. Becerra, F.E., Fan, J., Migdall, A.: Implementation of generalized quantum measurements for unambiguous discrimination of multiple non-orthogonal coherent states, Nat. Commun. 4(1) (2013). https://doi.org/10.1038/ncomms3028

  18. Izumi, S., Neergaard-Nielsen, J.S., Andersen, U.L.: Adaptive generalized measurement for unambiguous state discrimination of quaternary phase-shift-keying Coherent States, PRX Quantum. 2(2) (2021). https://doi.org/10.1103/PRXQuantum.2.020305

  19. Becerra, F.E., Fan, J., Baumgartner, G., Polyakov, S.V., Goldhar, J., Kosloski, J.T., Migdall, A.: M-ary-state phase-shift-keying discrimination below the homodyne limit, Phys. Rev. A Atomic Mole. Opt. Phys. 84(6) (2011). https://doi.org/10.1103/PhysRevA.84.062324

  20. Takeoka, M., Sasaki, M., Luetkenhaus, N.: Binary projective measurement via linear optics and photon counting. Phys. Rev. Lett. 97(4), 40501–40502 (2006)

    Article  Google Scholar 

  21. Kikuchi, K.: Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34(1), 157–179 (2016). https://doi.org/10.1109/JLT.2015.2463719

    Article  ADS  Google Scholar 

  22. Yuan, R., Zhao, M., Han, S., Cheng, J.: Kennedy receiver using threshold detection and optimized displacement under thermal noise. IEEE Commun. Lett. 24(6), 1313–1317 (2020). https://doi.org/10.1109/LCOMM.2020.2980537

    Article  Google Scholar 

  23. Becerra, F.E., Fan, J., Migdall, A.: Photon number resolution enables quantum receiver for realistic coherent optical communications. Nat. Photonics. 9(1), 48–53 (2015). https://doi.org/10.1038/nphoton.2014.280

    Article  ADS  Google Scholar 

  24. Wittmann, C., Andersen, U.L., Leuchs, G.: Discrimination of optical coherent states using a photon number resolving detector. J. Mod. Optic. 57(3), 213–217 (2010). https://doi.org/10.1080/09500340903145031

    Article  ADS  MATH  Google Scholar 

  25. Wittmann, C., Andersen, U.L., Takeoka, M., Sych, D., Leuchs, G.: Demonstration of coherent-state discrimination using a displacement-controlled photon-number-resolving detector. Phys. Rev. Lett. 104(10), 100505 (2010). https://doi.org/10.1103/PhysRevLett.104.100505

    Article  ADS  Google Scholar 

  26. Pan, X., Wang, X., Tian, B., Wang, C., Zhang, H., Guizani, M.: Machine-learning-aided optical fiber communication system. IEEE Network 35(4), 136–142 (2021). https://doi.org/10.1109/MNET.011.2000676

    Article  Google Scholar 

  27. Lohani, S., Glasser, R.T.: Coherent optical communications enhanced by machine intelligence. Mach. Learn. Sci. Technol. 1(3), 35006 (2020). https://doi.org/10.1088/2632-2153/ab9c3d

    Article  Google Scholar 

  28. Li, J., Guo, Y., Wang, X., Xie, C., Zhang, L., Huang, D.: Discrete-modulated continuous-variable quantum key distribution with a machine-learning-based detector. Opt. Eng. 57(06), 1 (2018). https://doi.org/10.1117/1.OE.57.6.066109

    Article  Google Scholar 

  29. Lohani, S., Knutson, E.M., Glasser, R.T.: Generative machine learning for robust free-space communication. Commun. Phys. (2020). https://doi.org/10.1038/s42005-020-00444-9

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by grants from the National Natural Science Foundation of China (62101559); National key basic research program of China (2021-JCJQ-JJ-0510); Scientific research program of National University of Defense Science and technology (ZK21-37). the Innovative Key Projects Promotion in Information and Communication College (No. YJKT-ZD-2105), the National University of Defense Technology under Grant No. 19-QNCXJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Wu, T., Li, K. et al. Optimized decision strategy for quadrature phase-shift-keying unambiguous states discrimination. Quantum Inf Process 21, 229 (2022). https://doi.org/10.1007/s11128-022-03566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03566-x

Keywords

Navigation