Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

State transfer on paths with weighted loops

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider the fidelity of state transfer on an unweighted path on \(n \ge 3\) vertices, where a loop of weight w has been appended at each of the end vertices. It is known that if w is transcendental, then there is pretty good state transfer from one end vertex to the other; we prove a companion result to that fact, namely that there is a dense subset of \([1,\infty )\) such that if w is in that subset, pretty good state transfer between end vertices is impossible. Under mild hypotheses on w and t, we derive upper and lower bounds on the fidelity of state transfer between end vertices at readout time t. Using those bounds, we localise the readout times for which that fidelity is close to 1. We also provide expressions for, and bounds on, the sensitivity of the fidelity of state transfer between end vertices, where the sensitivity is with respect to either the readout time or the weight w. Throughout, the results rely on detailed knowledge of the eigenvalues and eigenvectors of the associated adjacency matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Albanese, C., Christandl, M., Datta, N., Ekert, A.: Mirror inversion of quantum states in linear registers. Phys. Rev. Lett. 93, 230502 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  2. Banchi, L., Coutinho, G., Godsil, C., Severini, S.: Pretty good state transfer in qubit chains-the Heisenberg Hamiltonian. J. Math. Phys. 58(3), 032202 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91(20), 207901 (2003)

    Article  ADS  Google Scholar 

  4. Casaccino, A., Lloyd, S., Mancini, S., Severini, S.: Quantum state transfer through a qubit network with energy shifts and fluctuations. Int. J. Quantum Inf. 7(8), 1417–1427 (2009)

    Article  Google Scholar 

  5. Chen, X., Mereau, R., Feder, D.L.: Asymptotically perfect efficient quantum state transfer across unifrom chains with two impurities. Phys. Rev. A 93, 012343 (2016)

    Article  ADS  Google Scholar 

  6. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  7. Christandl, M., Datta, N., Dorlas, T.C., Ekert, A., Kay, A., Landahl, A.J.: Perfect transfer of arbitrary states in quantum spin networks. Phys. Rev. A 71, 032312 (2005)

    Article  ADS  Google Scholar 

  8. Coutinho, G., Guo, K., van Bommel, C.M.: Pretty good state transfer between internal nodes of path. Quantum Inf. Comput. 17(9–10), 825–830 (2017)

    MathSciNet  Google Scholar 

  9. Godsil, C.: State transfer on graphs. Discrete Math. 312(1), 129–147 (2012)

    Article  MathSciNet  Google Scholar 

  10. Godsil, C., Kirkland, S., Severini, S., Smith, J.: Number-theoretic nature of communication in quantum spin systems. Phys. Rev. Lett. 109(5), 050502 (2012)

    Article  ADS  Google Scholar 

  11. Karimipour, V., Sarmadi Rad, M., Asoudah, M.: Perfect quantum state transfer in two- and three dimensional structures. Phys. Rev. A 85, 010302 (2012)

    Article  ADS  Google Scholar 

  12. Kay, A.: Perfect, efficient, state transfer and its applications as a constructive tool. Int. J. Quantum Inf. 8(4), 641 (2010)

    Article  Google Scholar 

  13. Kempton, M., Lippner, G., Yau, S.-T.: Perfect state transfer on graphs with a potential. Quantum Inf. Comput. 17(3), 303–327 (2017)

    MathSciNet  Google Scholar 

  14. Kempton, M., Lippner, G., Yau, S.-T.: Pretty good quantum state transfer in symmetric spin networks via magnetic field. Quantum Inf. Process. 16, 210 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Kirkland, S.: Sensitivity analysis of perfect state transfer in quantum spin networks. Linear Algebra Appl. 472, 1–30 (2015)

    Article  MathSciNet  Google Scholar 

  16. Lin, Y., Lippner, G., Yau, S.-T.: Quantum tunneling on graphs. Commun. Math. Phys. 311, 113–132 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  17. Linneweber, T., Stolze, J., Uhrig, G.S.: Perfect state transfer in XX chains induced by boundary magnetic fields. Int. J. Quantum Inf. 10, 1250029 (2012)

    Article  Google Scholar 

  18. Lorenzo, S., Apollaro, T.J.G., Sindona, A., Plastina, F.: Quantum-state transfer via resonant tunneling through local-field-induced barriers. Phys. Rev. A 87, 042313 (2013)

    Article  ADS  Google Scholar 

  19. Pemberton-Ross, P.J., Kay, A.: Perfect quantum routing in regular spin networks. Phys. Rev. Lett. 106, 020503 (2011)

    Article  ADS  Google Scholar 

  20. Stevanovic, D.: Applications of graph spectra in quantum physics. Sel. Top. Appl. Graph Spectra 85–111 (2011)

  21. Stewart, G.W.: Introduction to Matrix Computations. Academic Press, New York (1973)

    MATH  Google Scholar 

  22. van Bommel, C.M.: A complete characterization of pretty good state transfer on paths. Quantum Inf. Comput. 19(7–8), 601–608 (2019)

    MathSciNet  Google Scholar 

  23. Vinet, L., Zhedanov, A.: Almost perfect state transfer in quantum spin chains. Phys. Rev. A 86, 0523119 (2012)

    Article  Google Scholar 

  24. Wójcik, A., Łuczak, T., Kurzyński, P., Grudka, A., Gdala, T., Bednarska, M.: Unmodulated spin chains as universal quantum wires. Phys. Rev. A 72, 034303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees, whose comments improved this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. van Bommel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Stephen Kirkland: Research supported in part by The Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN–2019–05408. Christopher M. van Bommel: Research supported in part by the Pacific Institute for the Mathematical Sciences (PIMS).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirkland, S., van Bommel, C.M. State transfer on paths with weighted loops. Quantum Inf Process 21, 209 (2022). https://doi.org/10.1007/s11128-022-03558-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03558-x

Keywords

Mathematics Subject Classification

Navigation