Abstract
We consider the problem of determining the achievable region of the universal \(1 \rightarrow 2\) asymmetric quantum cloning problem. This concerns the quantum cloning of any quantum state to two approximate clones of different qualities. Measuring the cloning performance with the probabilities of the mixed clone states as the figure of merit, we show that the physical region is a union of ellipses in the plane. The study of these regions has consequences for the eavesdropping on quantum cryptography, and a wide variety of tasks. Equivalently, we characterize the region of quantum-state compatibility of two possibly different isotropic states, considering, for the first time, negative figures of merit.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bridgeman, J.C., Chubb, C.T.: Hand-waving and interpretive dance: an introductory course on tensor networks. J. Phys. A Math. Theor. 50(22), 223001 (2017)
Bruss, D., Ekert, A., Macchiavello, C.: Optimal universal quantum cloning and state estimation. Phys. Rev. Lett. 81(12), 2598 (1998)
Bruß, D., Cinchetti, M., DAriano, G.M., Macchiavello, C.: Phase-covariant quantum cloning. Phys. Rev. A 62(1), 012302 (2000)
Bužek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54(3), 1844 (1996)
Cerf, N.J.: Asymmetric quantum cloning machines. J. Mod. Opt. 47, 187 (1998)
Cerf, N.J.: Asymmetric quantum cloning in any dimension. J. Mod. Opt. 47(2–3), 187–209 (2000)
Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10(3), 285–290 (1975)
Coecke, B., Kissinger, A.: Picturing Quantum Processes. Cambridge University Press, Cambridge (2017)
Ćwikliński, P., Horodecki, M., Studziński, M.: Region of fidelities for a \(1 \rightarrow n\) universal qubit quantum cloner. Phys. Lett. A 376(32), 2178–2187 (2012)
Eggeling, T., Werner, R.F.: Separability properties of tripartite states with \(u \otimes u \otimes u\) symmetry. Phys. Rev. A 63(4), 042111 (2001)
Fiurášek, J., Filip, R., Cerf, N.J.: Highly asymmetric quantum cloning in arbitrary dimension. Quantum Inf. Comput. 5(7), 583–592 (2005)
Fiurasek, J., Filip, R., Cerf, N.J.: Highly asymmetric quantum cloning in arbitrary dimension. Quantum Inf. Comput. 5, 583–592 (2005)
Hashagen, A.L.: Universal asymmetric quantum cloning revisited. Quantum Inf. Comput. 17(9–10), 0747–0778 (2017)
Heinosaari, T., Miyadera, T., Ziman, M.: An invitation to quantum incompatibility. J. Phys. A Math. Theor. 49(12), 123001 (2016)
Hsieh, C.Y., Lostaglio, M., Acín, A.: Quantum channel marginal problem (2021). arXiv preprint arXiv:210210926
Kay, A.: Optimal universal quantum cloning: asymmetries and fidelity measures. Quantum Inf. Comput. 16(11 & 12), 0991–1028 (2016)
Kay, A., Kaszlikowski, D., Ramanathan, R.: Optimal cloning and singlet monogamy. Phys. Rev. Lett. 103(5), 050501 (2009)
Kay, A., Ramanathan, R., Kaszlikowshi, D.: Optimal asymmetric quantum cloning for quantum information and computation. Quantum Inf. Comput. 13, 880–900 (2013)
Keyl, M., Werner, R.F.: Optimal cloning of pure states, testing single clones. J. Math. Phys. 40(7), 3283–3299 (1999)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)
Niu, C.S., Griffiths, R.B.: Two-qubit copying machine for economical quantum eavesdropping. Phys. Rev. A 60(4), 2764 (1999)
Penrose, R.: Applications of negative dimensional tensors. Combin. Math. Appl. 1, 221–244 (1971)
Studziński, M., Horodecki, M., Mozrzymas, M.: Commutant structure of \(u^{\otimes (n- 1)} \otimes u^*\) transformations. J. Phys. A Math. Theor. 46(39), 395303 (2013)
Studziński, M., Ćwikliński, P., Horodecki, M., Mozrzymas, M.: Group-representation approach to \(1 \rightarrow n\) universal quantum cloning machines. Phys. Rev. A 89(5), 052322 (2014)
Vollbrecht, K.G.H., Werner, R.F.: Entanglement measures under symmetry. Phys. Rev. A 64(6), 062307 (2001)
Watrous, J.: The Theory of Quantum Information. Cambridge University Press, Cambridge (2018)
Werner, R.F.: Optimal cloning of pure states. Phys. Rev. A 58(3), 1827 (1998)
Weyl, H.: The Classical Groups. Princeton University Press, Princeton (2016)
Wood, C.J., Biamonte, J.D., Cory, D.G.: Tensor networks and graphical calculus for open quantum systems. Quantum Inf. Comput. 15(9–10), 759–811 (2015)
Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)
Acknowledgements
We would like to thank Satvik Singh for useful remarks about the paper. We are also thankful to the anonymous referees for their remarks which helped improve the quality of the presentation. This research was supported by the ANR project “ESQuisses” (ANR-20-CE47-0014-01). This research was supported by the ANR Program‘Investissements d’Avenir” with reference ANR-11-LABX-0040 trough the Labex CIMI. The research of C.P. has been supported by project “QTraj”(ANR-20-CE40-0024-01) of the French National Research Agency (ANR).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nechita, I., Pellegrini, C. & Rochette, D. A geometrical description of the universal \(1 \rightarrow 2\) asymmetric quantum cloning region. Quantum Inf Process 20, 333 (2021). https://doi.org/10.1007/s11128-021-03258-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03258-y