Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A geometrical description of the universal \(1 \rightarrow 2\) asymmetric quantum cloning region

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider the problem of determining the achievable region of the universal \(1 \rightarrow 2\) asymmetric quantum cloning problem. This concerns the quantum cloning of any quantum state to two approximate clones of different qualities. Measuring the cloning performance with the probabilities of the mixed clone states as the figure of merit, we show that the physical region is a union of ellipses in the plane. The study of these regions has consequences for the eavesdropping on quantum cryptography, and a wide variety of tasks. Equivalently, we characterize the region of quantum-state compatibility of two possibly different isotropic states, considering, for the first time, negative figures of merit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bridgeman, J.C., Chubb, C.T.: Hand-waving and interpretive dance: an introductory course on tensor networks. J. Phys. A Math. Theor. 50(22), 223001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bruss, D., Ekert, A., Macchiavello, C.: Optimal universal quantum cloning and state estimation. Phys. Rev. Lett. 81(12), 2598 (1998)

    Article  ADS  Google Scholar 

  3. Bruß, D., Cinchetti, M., DAriano, G.M., Macchiavello, C.: Phase-covariant quantum cloning. Phys. Rev. A 62(1), 012302 (2000)

    Article  ADS  Google Scholar 

  4. Bužek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54(3), 1844 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. Cerf, N.J.: Asymmetric quantum cloning machines. J. Mod. Opt. 47, 187 (1998)

    Article  ADS  Google Scholar 

  6. Cerf, N.J.: Asymmetric quantum cloning in any dimension. J. Mod. Opt. 47(2–3), 187–209 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  7. Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10(3), 285–290 (1975)

    Article  MathSciNet  Google Scholar 

  8. Coecke, B., Kissinger, A.: Picturing Quantum Processes. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  9. Ćwikliński, P., Horodecki, M., Studziński, M.: Region of fidelities for a \(1 \rightarrow n\) universal qubit quantum cloner. Phys. Lett. A 376(32), 2178–2187 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  10. Eggeling, T., Werner, R.F.: Separability properties of tripartite states with \(u \otimes u \otimes u\) symmetry. Phys. Rev. A 63(4), 042111 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. Fiurášek, J., Filip, R., Cerf, N.J.: Highly asymmetric quantum cloning in arbitrary dimension. Quantum Inf. Comput. 5(7), 583–592 (2005)

    MATH  Google Scholar 

  12. Fiurasek, J., Filip, R., Cerf, N.J.: Highly asymmetric quantum cloning in arbitrary dimension. Quantum Inf. Comput. 5, 583–592 (2005)

    MATH  Google Scholar 

  13. Hashagen, A.L.: Universal asymmetric quantum cloning revisited. Quantum Inf. Comput. 17(9–10), 0747–0778 (2017)

    MathSciNet  Google Scholar 

  14. Heinosaari, T., Miyadera, T., Ziman, M.: An invitation to quantum incompatibility. J. Phys. A Math. Theor. 49(12), 123001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hsieh, C.Y., Lostaglio, M., Acín, A.: Quantum channel marginal problem (2021). arXiv preprint arXiv:210210926

  16. Kay, A.: Optimal universal quantum cloning: asymmetries and fidelity measures. Quantum Inf. Comput. 16(11 & 12), 0991–1028 (2016)

    MathSciNet  Google Scholar 

  17. Kay, A., Kaszlikowski, D., Ramanathan, R.: Optimal cloning and singlet monogamy. Phys. Rev. Lett. 103(5), 050501 (2009)

    Article  ADS  Google Scholar 

  18. Kay, A., Ramanathan, R., Kaszlikowshi, D.: Optimal asymmetric quantum cloning for quantum information and computation. Quantum Inf. Comput. 13, 880–900 (2013)

    MathSciNet  Google Scholar 

  19. Keyl, M., Werner, R.F.: Optimal cloning of pure states, testing single clones. J. Math. Phys. 40(7), 3283–3299 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  21. Niu, C.S., Griffiths, R.B.: Two-qubit copying machine for economical quantum eavesdropping. Phys. Rev. A 60(4), 2764 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  22. Penrose, R.: Applications of negative dimensional tensors. Combin. Math. Appl. 1, 221–244 (1971)

    MathSciNet  MATH  Google Scholar 

  23. Studziński, M., Horodecki, M., Mozrzymas, M.: Commutant structure of \(u^{\otimes (n- 1)} \otimes u^*\) transformations. J. Phys. A Math. Theor. 46(39), 395303 (2013)

    Article  MathSciNet  Google Scholar 

  24. Studziński, M., Ćwikliński, P., Horodecki, M., Mozrzymas, M.: Group-representation approach to \(1 \rightarrow n\) universal quantum cloning machines. Phys. Rev. A 89(5), 052322 (2014)

    Article  ADS  Google Scholar 

  25. Vollbrecht, K.G.H., Werner, R.F.: Entanglement measures under symmetry. Phys. Rev. A 64(6), 062307 (2001)

    Article  ADS  Google Scholar 

  26. Watrous, J.: The Theory of Quantum Information. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  27. Werner, R.F.: Optimal cloning of pure states. Phys. Rev. A 58(3), 1827 (1998)

    Article  ADS  Google Scholar 

  28. Weyl, H.: The Classical Groups. Princeton University Press, Princeton (2016)

    Book  Google Scholar 

  29. Wood, C.J., Biamonte, J.D., Cory, D.G.: Tensor networks and graphical calculus for open quantum systems. Quantum Inf. Comput. 15(9–10), 759–811 (2015)

    MathSciNet  Google Scholar 

  30. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Satvik Singh for useful remarks about the paper. We are also thankful to the anonymous referees for their remarks which helped improve the quality of the presentation. This research was supported by the ANR project “ESQuisses” (ANR-20-CE47-0014-01). This research was supported by the ANR Program‘Investissements d’Avenir” with reference ANR-11-LABX-0040 trough the Labex CIMI. The research of C.P. has been supported by project “QTraj”(ANR-20-CE40-0024-01) of the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Rochette.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nechita, I., Pellegrini, C. & Rochette, D. A geometrical description of the universal \(1 \rightarrow 2\) asymmetric quantum cloning region. Quantum Inf Process 20, 333 (2021). https://doi.org/10.1007/s11128-021-03258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03258-y

Keywords

Navigation