Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Engineering distributed atomic NOON states via single-photon detection

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We propose a simple and novel scheme to generate a NOON state for the atoms trapped in two separate cavities by means of single-photon detection. The light–atom interaction entangles the frequency spectrum of light and the atomic collective spins, and the photon–atom entangled state is converted to a purely atomic NOON state by time-resolved detection on the transmitted photon. The fidelity of the NOON state reduces in the presence of dissipation. We further propose an effective protocol to improve the fidelity, which yields a high-fidelity many-atom NOON state. Our scheme can be implemented with the current technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Żukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)

    ADS  Google Scholar 

  3. Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733 (2000)

    ADS  Google Scholar 

  4. Kok, P., Boto, A.N., Abrams, D.S., Williams, C.P., Braunstein, S.L., Dowling, J.P.: Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns. Phys. Rev. A 63, 063407 (2001)

    ADS  Google Scholar 

  5. O’brien, J.L., Furusawa, A., Vučković, J.: Photonic quantum technologies. Nat. Photonics 3(12), 687 (2009)

  6. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5(4), 222 (2011)

    ADS  Google Scholar 

  7. Pezzè, L., Smerzi, A., Oberthaler, M.K., Schmied, R., Treutlein, P.: Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018)

    ADS  MathSciNet  Google Scholar 

  8. Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)

    ADS  Google Scholar 

  9. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404(6775), 247 (2000)

    ADS  MATH  Google Scholar 

  10. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1(3), 165 (2007)

    ADS  Google Scholar 

  11. Nagata, T., Okamoto, R., O’brien, J.L., Sasaki, K., Takeuchi, S.: Beating the standard quantum limit with four-entangled photons. Science 316(5825), 726 (2007)

  12. Higgins, B.L., Berry, D.W., Bartlett, S.D., Wiseman, H.M., Pryde, G.J.: Entanglement-free Heisenberg-limited phase estimation. Nature 450(7168), 393 (2007)

    ADS  Google Scholar 

  13. Afek, I., Ambar, O., Silberberg, Y.: High-NOON states by mixing quantum and classical light. Science 328(5980), 879 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Wang, H., Mariantoni, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Yamamoto, T., Yin, Y., Zhao, J., Martinis, J.M., Cleland, A.N.: Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011)

    ADS  Google Scholar 

  15. Chen, J., Wei, L.F.: Deterministic generations of photonic NOON states in cavities via shortcuts to adiabaticity. Phys. Rev. A 95, 033838 (2017)

    ADS  Google Scholar 

  16. Kamide, K., Ota, Y., Iwamoto, S., Arakawa, Y.: Method for generating a photonic NOON state with quantum dots in coupled nanocavities. Phys. Rev. A 96, 013853 (2017)

    ADS  Google Scholar 

  17. Zhang, J., Um, M., Lv, D., Zhang, J.N., Duan, L.M., Kim, K.: NOON states of nine quantized vibrations in two radial modes of a trapped ion. Phys. Rev. Lett. 121, 160502 (2018)

    ADS  Google Scholar 

  18. Specht, H.P., Nölleke, C., Reiserer, A., Uphoff, M., Figueroa, E., Ritter, S., Rempe, G.: A single-atom quantum memory. Nature 473(7346), 190–193 (2011)

    ADS  Google Scholar 

  19. Reiserer, A., Kalb, N., Rempe, G., Ritter, S.: A quantum gate between a flying optical photon and a single trapped atom. Nature 508(7495), 237–240 (2014)

    ADS  Google Scholar 

  20. Tiecke, T.G., Thompson, J.D., de Leon, N.P., Liu, L.R., Vuletić, V., Lukin, M.D.: Nanophotonic quantum phase switch with a single atom. Nature 508(7495), 241–244 (2014)

    ADS  Google Scholar 

  21. Chen, Y.A., Bao, X.H., Yuan, Z.S., Chen, S., Zhao, B., Pan, J.W.: Heralded generation of an atomic NOON state. Phys. Rev. Lett. 104, 043601 (2010)

    ADS  Google Scholar 

  22. Bychek, A.A., Maksimov, D.N., Kolovsky, A.R.: NOON state of Bose atoms in the double-well potential via an excited-state quantum phase transition. Phys. Rev. A 97, 063624 (2018)

    ADS  Google Scholar 

  23. Nikoghosyan, G., Hartmann, M.J., Plenio, M.B.: Generation of mesoscopic entangled states in a cavity coupled to an atomic ensemble. Phys. Rev. Lett. 108, 123603 (2012)

    ADS  Google Scholar 

  24. Mohseni, N., Saeidian, S., Dowling, J.P., Navarrete-Benlloch, C.: Deterministic generation of hybrid high-\(N\) NOON states with Rydberg atoms trapped in microwave cavities. Phys. Rev. A 101, 013804 (2020)

    ADS  Google Scholar 

  25. Li, C., Sampuli, E.M., Song, J., Xia, Y., Ding, W.: One-step engineering many-atom NOON state. New J. Phys. 20(9), 093019 (2018)

    ADS  Google Scholar 

  26. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distance. Science 283(5410), 2050 (1999)

    ADS  Google Scholar 

  27. Epping, M., Kampermann, H., Macchiavello, C., Bruß, D.: Multi-partite entanglement can speed up quantum key distribution in networks. New J. Phys. 19(9), 093012 (2017). https://doi.org/10.1088/1367-2630/aa8487

    Article  ADS  MathSciNet  Google Scholar 

  28. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Bell, B., Markham, D., Herrera-Martí, D., Marin, A., Wadsworth, W., Rarity, J., Tame, M.: Experimental demonstration of graph-state quantum secret sharing. Nat. Commun. 5(1), 1 (2014)

    Google Scholar 

  31. Komar, P., Kessler, E.M., Bishof, M., Jiang, L., Sørensen, A.S., Ye, J., Lukin, M.D.: A quantum network of clocks. Nat. Phys. 10(8), 582 (2014)

    Google Scholar 

  32. Eldredge, Z., Foss-Feig, M., Gross, J.A., Rolston, S.L., Gorshkov, A.V.: Optimal and secure measurement protocols for quantum sensor networks. Phys. Rev. A 97, 042337 (2018)

    ADS  Google Scholar 

  33. Hangauer, A., Spinner, G., Nikodem, M., Wysocki, G.: High frequency modulation capabilities and quasi single-sideband emission from a quantum cascade laser. Opt. Express 22(19), 23439 (2014)

    ADS  Google Scholar 

  34. Shehzad, A., Brochard, P., Matthey, R., Blaser, S., Gresch, T., Maulini, R., Muller, A., Südmeyer, T., Schilt, S.: Electrically-driven pure amplitude and frequency modulation in a quantum cascade laser. Opt. Express 26(9), 12306 (2018)

    ADS  Google Scholar 

  35. Chen, W., Hu, J., Duan, Y., Braverman, B., Zhang, H., Vuletić, V.: Carving complex many-atom entangled states by single-photon detection. Phys. Rev. Lett. 115, 250502 (2015)

    ADS  Google Scholar 

  36. Berman, P.R., Lin, C.C., Arimondo, E.: Advances in atomic, molecular, and optical physics. In: Advances in Atomic, Molecular, and Optical Physics, vol. 54, Chapter 4, pp. 201–237. Elsevier, Amsterdam (2006)

  37. Byrnes, T., Rosseau, D., Khosla, M., Pyrkov, A., Thomasen, A., Mukai, T., Koyama, S., Abdelrahman, A., Ilo-Okeke, E.: Macroscopic quantum information processing using spin coherent states. Opt. Commun. 337, 102 (2015)

    ADS  Google Scholar 

  38. Hunger, D., Deutsch, C., Barbour, R.J., Warburton, R.J., Reichel, J.: Laser micro-fabrication of concave, low-roughness features in silica. AIP Adv. 2(1), 012119 (2012)

    ADS  Google Scholar 

  39. Douglas, J.S., Habibian, H., Hung, C.L., Gorshkov, A.V., Kimble, H.J., Chang, D.E.: Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photonics 9(5), 326–331 (2015)

    ADS  Google Scholar 

  40. Boca, A., Miller, R., Birnbaum, K.M., Boozer, A.D., McKeever, J., Kimble, H.J.: Observation of the vacuum Rabi spectrum for one trapped atom. Phys. Rev. Lett. 93, 233603 (2004)

    ADS  Google Scholar 

  41. Maunz, P., Puppe, T., Schuster, I., Syassen, N., Pinkse, P.W.H., Rempe, G.: Normal-mode spectroscopy of a single-bound-atom-cavity system. Phys. Rev. Lett. 94, 033002 (2005)

    ADS  Google Scholar 

  42. Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature 436(7047), 87 (2005)

    ADS  Google Scholar 

  43. Colombe, Y., Steinmetz, T., Dubois, G., Linke, F., Hunger, D., Reichel, J.: Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450(7167), 272 (2007)

    ADS  Google Scholar 

  44. Kubanek, A., Ourjoumtsev, A., Schuster, I., Koch, M., Pinkse, P.W.H., Murr, K., Rempe, G.: Two-photon gateway in one-atom cavity quantum electrodynamics. Phys. Rev. Lett. 101, 203602 (2008)

    ADS  Google Scholar 

  45. Gehr, R., Volz, J., Dubois, G., Steinmetz, T., Colombe, Y., Lev, B.L., Long, R., Estève, J., Reichel, J.: Cavity-based single atom preparation and high-fidelity hyperfine state readout. Phys. Rev. Lett. 104, 203602 (2010)

    ADS  Google Scholar 

  46. Koch, M., Sames, C., Balbach, M., Chibani, H., Kubanek, A., Murr, K., Wilk, T., Rempe, G.: Three-photon correlations in a strongly driven atom-cavity system. Phys. Rev. Lett. 107, 023601 (2011)

    ADS  Google Scholar 

  47. Hamsen, C., Tolazzi, K.N., Wilk, T., Rempe, G.: Two-photon blockade in an atom-driven cavity QED system. Phys. Rev. Lett. 118, 133604 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (11474077, 11675046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Dong, Y., Zhang, J. et al. Engineering distributed atomic NOON states via single-photon detection. Quantum Inf Process 20, 139 (2021). https://doi.org/10.1007/s11128-021-03077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03077-1

Keywords

Navigation