Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

New results for 2-uniform states based on irredundant orthogonal arrays

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An \(N \times k\) array A with entries from v-set \({\mathcal {V}}\) is said to be an orthogonal array with v levels, strength t and index \(\lambda \), denoted by OA(Ntkv), if every \(N \times t\) sub-array of A contains each t-tuple based on \({\mathcal {V}}\) exactly \(\lambda \) times as a row. An OA(Ntkv) is called irredundant, denoted by IrOA(Ntkv), if in any \(N\times (k-t )\) sub-array, all of its rows are different. The definition of an IrOA was firstly introduced by Goyeneche and \({\dot{Z}}\)yczkowski (Phys Rev A 90:022316, 2014) who showed an IrOA(Ntkv) corresponds to a t-uniform state of k subsystems with local dimension v. In this paper, we construct some kinds of 2-uniform states by establishing the existence of an IrOA\((v^3;2,12,v)\) for any integer \((v\ge 4)\) and \((v\not \equiv 2\pmod 4)\), and an IrOA\((v^3;2,3v,v)\) for any prime or prime power \(v\ge 3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  4. Colbourn, C.J., Dinitz, J.H.: The CRC Handbook of Combinatorial Designs. CRC Press, Boca Raton (2007)

    MATH  Google Scholar 

  5. Dey, A., Mukerjee, R.: Fractional Factorial Plans. Wiley, New York (1999)

    Book  Google Scholar 

  6. Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. Facchi, P.: Multipartite entanglement in qubit systems. Rend. Lincei Mat. Appl. 20, 25–67 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Facchi, P., Florio, G., Parisi, G., Pascazio, S.: Maximally multipartite entangled states. Phys. Rev. A 77, 060304 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Feng, K.Q., Jin, L.F., Xing, C.P., Yuan, C.: Multipartite entangled states, symmetric matrices and error-correcting codes. IEEE Trans. Inf. Theory 63, 5618–5627 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Ge, G.: On (g,4;1)-difference matrices. Discrete Math. 301(2), 164–174 (2005)

    Article  MathSciNet  Google Scholar 

  11. Goyeneche, D., Raissi, Z., Martino, S.D., Życzkowski, K.: Entanglement and quantum combinatorial designs. Phys. Rev. A 97(6), 062326 (2018)

    Article  ADS  Google Scholar 

  12. Goyeneche, D., Życzkowski, K.: Genuinely multipartite entangled states and orthogonal arrays. Phys. Rev. A 90, 022316 (2014)

    Article  ADS  Google Scholar 

  13. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Applications. Springer, NewYork (1999)

    Book  Google Scholar 

  14. Helwig, W.: Absolutely maximally entangled qudit graph states. Preprint, arXiv:1306.2879v1

  15. Helwig, W., Cui, W., Latorre, J.I., Riera, A., Lo, H.K.: Absolute maximal entanglement and 4 quantum secret sharing. Phys. Rev. A 86, 052335 (2012)

    Article  ADS  Google Scholar 

  16. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. Horodecki, P., Rudnicki, Ł., Życzkowski, K.: Five open problems in quantum information. Preprint, arXiv:2002.03233v1

  18. Ji, L., Yin, J.: Constructions of new orthogonal arrays and covering arrays of strength three. J. Comb. Theory Ser. A 117(3), 236–247 (2010)

    Article  MathSciNet  Google Scholar 

  19. Jozsa, R., Linden, N.: On the role of entanglement in quantum computational speed-up. Proc. R. Soc. A 459, 2011–2032 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  20. Li, M.S., Wang, Y.L.: \(k\)-uniform quantum states arising from orthogonal arrays. Phy. Rev. A 99, 042332 (2019)

    Article  ADS  Google Scholar 

  21. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  22. Pang, S.Q., Zhang, X., Lin, X., Zhang, Q.J.: Two and three-uniform states from irredundant orthogonal arrays. npj Quantum Inf. 5, 1–10 (2019)

    Article  Google Scholar 

  23. Pastawski, F., Yoshida, B., Harlow, D., Preskill, J.: Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. J. High Energy Phys. 6, 149 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Rao, C.R.: Factorial experiments derivable from combinational arrangements of arrays. J. R. Stat. Soc. 9, 128–139 (1947)

    MATH  Google Scholar 

  25. Riebe, M., Haffner, H., Roos, F.C., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)

    Article  ADS  Google Scholar 

  26. Roos, C.F., Riebe, M., Haffner, H., et al.: Control and measurement of three-qubit entangled states. Science 304(5676), 1478–1480 (2004)

    Article  ADS  Google Scholar 

  27. Scott, A.J.: Multipartite entanglement, quantum-error-correcting codes, and entangling power of quan-tum evolutions. Phys. Rev. A 69, 052330 (2004)

    Article  ADS  Google Scholar 

  28. Shi, F., Shen, Y., Chen, L., Zhang, X.: Constructions of k-uniform states from mixed orthogonal arrays. arXiv:2006.04086v1

  29. Zang, Y.J., Chen, G.Z., Chen, K.J., Tian, Z.H.: Further results on 2-uniform states arising from irredundant orthogonal arrays. In: Advances in Mathematics of Communications (published online). https://doi.org/10.3934/amc.2020109

  30. Zang, Y.J., Zuo, H.J., Tian, Z.H.: 3-uniform states and orthogonal arrays of strength 3. Int. J. Quantum Inf. 17, 1950003 (2019)

    Article  MathSciNet  Google Scholar 

  31. Zha, X.W., Ahmed, I., Zhang, Y.P.: 3-uniform states and orthogonal arrays. Results Phys. 6, 26–28 (2016)

    Article  ADS  Google Scholar 

  32. Zha, X.W., Yuan, C.Z., Zhang, Y.P.: Generalized criterion for a maximally multi-qubit entangled states. Laser Phys. Lett. 10, 045201 (2013)

    Article  ADS  Google Scholar 

  33. Zhao, Z., et al.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430(6995), 54–58 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhou Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by National Natural Science Foundation of China (Grant Nos. 11871417 and 11501181).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Zhang, X. & Guo, Y. New results for 2-uniform states based on irredundant orthogonal arrays. Quantum Inf Process 20, 43 (2021). https://doi.org/10.1007/s11128-020-02978-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02978-x

Keywords

Navigation