Abstract
Quantum secure direct communication (QSDC) makes two quantum users transmit secret message directly without first producing a shared secret key. Semi-quantum secure direct communication is a particular case of QSDC when one of the two users is a classical user. How to develop a similar protocol if both users are classical? In this paper, we proposed a mediated semi-quantum secure direct communication protocol where both classical users can transmit secret message with the help of a fully quantum third party. Classical users can generate and measure qubits in the computational basis, so they must rely on the third party to prepare alternative bases and perform alternative measurements. The security analysis shows that the protocol can effectively prevent secret message from eavesdropping even if the third party is untrusted. Moreover, the analysis shows that TP’s measurement operation can be associated with linear optical Bell measurements, where only two of the four Bell states would be measured. Finally, we perform an efficiency analysis that shows the protocol can reduce quantum resources at the expense of efficiency.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE (1984)
Lo, H., Chau, H.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050 (1999)
Shor, P., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)
Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (2001)
Biham, E., Boyer, M., Boykin, P., et al.: A proof of the security of quantum key distribution. J. Cryptol. 19(4), 381–439 (2006)
Long, G., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)
Deng, F., Long, G., Liu, X.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)
Deng, F., Long, G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)
Cai, Q., Li, B.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601–603 (2004)
Wang, J., Zhang, Q., Tang, C.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006)
Liu, D., Chen, J., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51(9), 2923–2929 (2012)
Chang, Y., Xu, C., Zhang, S., et al.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58(36), 4571–4576 (2013)
Gu, B., Huang, Y., Fang, X., et al.: Robust quantum secure communication with spatial quantum states of single photons. Int. J. Theor. Phys. 52(12), 4461–4469 (2013)
Jian, Z., Jin, G., Wang, T.: Efficient quantum secure direct communication using the orbital angular momentum of single photons. Int. J. Theor. Phys. 55(3), 1–9 (2015)
Gao, T., Yan, F., Wang, Z.: Quantum secure direct communication by EPR pairs and entanglement swapping. Nuovo cimento della Societa italiana di fisica B Relat Class Stat Phys 119(3), 313–318 (2004)
Deng, F., Li, X., Li, C., et al.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359(5), 359–365 (2006)
Li, X., Li, C., Deng, F., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149–5153 (2007)
Wang, C., Hao, L., Song, S., et al.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8(3), 443–450 (2010)
Wang, T., Li, T., Du, F., et al.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011)
Gu, B., Huang, Y., Fang, X., et al.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309 (2011)
Gu, B., Huang, Y., Fang, X., et al.: Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun. Theor. Phys. 56(4), 659–663 (2011)
Gu, B., Zhang, C., Cheng, G., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)
Ren, B., Wei, H., Hua, M., et al.: Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur. Phys. J. D 67(2), 30 (2013)
Zhao, X., Li, J., Niu, P., et al.: Two-step quantum secure direct communication scheme with frequency coding. Chin. Phys. B 26(3), 030302 (2017)
Wang, C., Deng, F., Long, G.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253(1–3), 15–20 (2005)
Wang, C., Deng, F., Li, Y., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)
Shi, J., Gong, Y., Xu, P., et al.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56(5), 831–836 (2011)
Gao, G., Fang, M., Yang, R.: Quantum secure direct communication by swapping entanglements of \(3\times 3\)-dimensional Bell states. Int. J. Theor. Phys. 50(3), 882–887 (2011)
Sun, Z., Du, R., Long, D.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51(6), 1946–1952 (2012)
Zheng, C., Long, G., et al.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57(7), 1238–1243 (2014)
Jin, X., Ji, X., Zhang, Y., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1–2), 67–70 (2006)
Wang, M., Yan, F.: Three-party simultaneous quantum secure direct communication scheme with EPR pairs. Chin. Phys. Lett. 24(9), 2486 (2007)
Xia, Y., Man, Z.: Controlled quantum N-party simultaneous direct communication. Commun. Theor. Phys. 48(1), 79–82 (2007)
Chong, S., Hwang, T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284(1), 515–518 (2011)
He, Y., Ma, W.: Three-party quantum secure direct communication against collective noise. Quantum Inf. Process. 16(10), 252 (2017)
Chen, S., Zhou, L., Zhong, W., et al.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61(9), 90312 (2018)
Liu, Z., Chen, H.: Analysis and improvement of large payload bidirectional quantum secure direct communication without information leakage. Int. J. Theor. Phys. 57(2), 311–321 (2018)
Cao, Z., Li, Y., Peng, J., et al.: Controlled quantum secure direct communication protocol based on huffman compression coding. Int. J. Theor. Phys. 57(12), 3632–3642 (2018)
Tsai, C., Hwang, T.: Six-qubit decoherence-free state measurement method and its application to development of authenticated quantum secure direct communication protocol. Int. J. Theor. Phys. 57(8), 2513–2522 (2018)
Shang, Y., Yu, W., Li, M., et al.: Quantum communication protocols by quantum walks with two coins. EPL 124(6), 60009 (2019)
Niu, P., Zhou, Z., Lin, Z., et al.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63(20), 1345–1350 (2018)
Zhou, Z., Sheng, Y., Niu, P.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63(3), 230362 (2020)
Gao, Z., Li, T., Li, Z.: Long-distance measurement-device-independent quantum secure direct communication. EPL 125(4), 40004 (2019)
Zhou, L., Sheng, Y., Long, G.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65(1), 12–20 (2020)
Hu, J., Yu, B., Jing, M., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)
Zhang, W., Ding, D., Sheng, Y., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)
Zhu, F., Zhang, W., Sheng, Y., et al.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)
Chen, Y., Chen, Y., Yu, I.: High-efficiency coherent light storage for the application of quantum memory. AAPPS Bull. 26(5), 3–8 (2016)
Shapiro, J., Boroson, D., Dixon, P., et al.: Quantum low probability of intercept. J. Opt. Soc. Am. B 36(3), B41–B50 (2019)
Lum, D., Howell, J., Allman, M., et al.: A quantum enigma machine: experimentally demonstrating quantum data locking. Phys. Rev. A 94(2), 022315 (2016)
Wu, J., Lin, Z., Yin, L., et al.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1(4), e26 (2019)
Qi, R., Sun, Z., Lin, Z.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8(1), 22 (2019)
Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)
Boyer, M., Gelles, R., Kenigsberg, D., et al.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)
Zou, X., Qiu, D.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)
Gu, J., Lin, P., Hwang, T.: Double C-NOT attack and counterattack on three-step semi-quantum secure direct communication protocol. Quantum Inf. Process. 17(7), 182 (2018)
Xie, C., Li, L., Situ, H., et al.: Semi-quantum secure direct communication scheme based on bell states. Int. J. Theor. Phys. 57(6), 1881–1887 (2018)
Yang, C., Tsai, C.: Advanced semi-quantum secure direct communication protocol based on bell states against flip attack. Quantum Inf. Process. 19(4), 126 (2020)
Zhang, M., Li, H., Xia, Z., et al.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)
Sun, Y., Yan, L., Chang, Y., et al.: Two semi-quantum secure direct communication protocols based on Bell states. Mod. Phys. Lett. A 34(1), 1950004 (2019)
Rong, Z., Qiu, D., Zou, X.: Semi-quantum secure direct communication with entanglement. Int. J. Theor. Phys. 59, 1807–1819 (2020)
Rong, Z., Qiu, D., Zou, X.: Two single-state semi-quantum secure direct communication protocols based on single photons. Int. J. Mod. Phys. B 34(11), 2050106 (2020)
Luo, Y., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15(2), 947–958 (2016)
Almousa, S., Barbeau, M.: Delay and reflection attacks in authenticated semi-quantum direct communications. In: 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, pp. 1–7. IEEE (2016)
Lu, H., Barbeau, M., Nayak, A.: Economic no-key semi-quantum direct communication protocol. In: 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, pp. 1–7. IEEE (2016)
Lu, H., Barbeau, M., Nayak, A.: Keyless semi-quantum point-to-point communication protocol with low resource requirements. Sci. Rep. 9(64), 1–15 (2019)
Tao, Z., Chang, Y., Zhang, S., et al.: Two semi-quantum direct communication protocols with mutual authentication based on Bell states. Int. J. Theor. Phys. 58(14), 2986–2993 (2019)
Wang, M., Liu, J., Gong, L.: Semiquantum secure direct communication with authentication based on single-photons. Int. J. Quantum Inf. 17(3), 1950024 (2019)
Krawec, W.: Mediated semiquantum key distribution. Phys. Rev. A 91, 032323 (2015)
Liu, Z., Hwang, T.: Mediated semi-quantum key distribution without invoking quantum measurement. Ann. Phys. 530(4), 1700206 (2018)
Lin, P., Tsai, C., Hwang, T.: Mediated semi-quantum key distribution using single photons. Ann. Phys. 531(8), 1800374 (2019)
Massa, F., Yadav, P., Moqanaki, A., et al.: Experimental Quantum Cryptography with Classical Users. arXiv preprint arXiv:1908.01780 (2019)
Tsai, C., Yang, C., Lee, N.: Lightweight mediated semi-quantum key distribution protocol. Mod. Phys. Lett. A 34(34), 1950281 (2019)
Tsai, C., Yang, C.: Lightweight Mediated Semi-Quantum Key Distribution Protocol with a Dishonest Third Party based on Bell States. arXiv preprint arXiv:1909.02788 (2019)
Krawec, W.: Multi-mediated semi-quantum key distribution. In: 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, pp. 1–6. IEEE (2019)
Deng, F., Long, G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)
Shannon, C.: Communication theory of secrecy systems. Bell Syst. Technol. J. 28(4), 656–715 (1945)
Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)
Acknowledgements
The authors would like to thank the anonymous referees for important suggestions that help us improve the quality of the manuscript. This work was partly supported by the National Natural Science Foundation of China (Nos. 61572532, 61876195), the Natural Science Foundation of Guangdong Province of China (No. 2017B030311011), and the Science and Technology Project of Jiangmen City of China (Nos. 2018JC01008, 2018JC01019, 2019JC01030), and Instituto de Telecomunicações via FCT from UIDB/EEA/50008/2020. X. Zou is supported by NSFC (No. 61871205).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Rong, Z., Qiu, D., Mateus, P. et al. Mediated semi-quantum secure direct communication. Quantum Inf Process 20, 58 (2021). https://doi.org/10.1007/s11128-020-02965-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02965-2