Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Mediated semi-quantum secure direct communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secure direct communication (QSDC) makes two quantum users transmit secret message directly without first producing a shared secret key. Semi-quantum secure direct communication is a particular case of QSDC when one of the two users is a classical user. How to develop a similar protocol if both users are classical? In this paper, we proposed a mediated semi-quantum secure direct communication protocol where both classical users can transmit secret message with the help of a fully quantum third party. Classical users can generate and measure qubits in the computational basis, so they must rely on the third party to prepare alternative bases and perform alternative measurements. The security analysis shows that the protocol can effectively prevent secret message from eavesdropping even if the third party is untrusted. Moreover, the analysis shows that TP’s measurement operation can be associated with linear optical Bell measurements, where only two of the four Bell states would be measured. Finally, we perform an efficiency analysis that shows the protocol can reduce quantum resources at the expense of efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE (1984)

  2. Lo, H., Chau, H.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050 (1999)

    Article  ADS  Google Scholar 

  3. Shor, P., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  4. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biham, E., Boyer, M., Boykin, P., et al.: A proof of the security of quantum key distribution. J. Cryptol. 19(4), 381–439 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Long, G., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  7. Deng, F., Long, G., Liu, X.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  8. Deng, F., Long, G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  9. Cai, Q., Li, B.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601–603 (2004)

    Article  ADS  Google Scholar 

  10. Wang, J., Zhang, Q., Tang, C.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006)

    Article  ADS  MATH  Google Scholar 

  11. Liu, D., Chen, J., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51(9), 2923–2929 (2012)

    Article  MATH  Google Scholar 

  12. Chang, Y., Xu, C., Zhang, S., et al.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58(36), 4571–4576 (2013)

    Article  Google Scholar 

  13. Gu, B., Huang, Y., Fang, X., et al.: Robust quantum secure communication with spatial quantum states of single photons. Int. J. Theor. Phys. 52(12), 4461–4469 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jian, Z., Jin, G., Wang, T.: Efficient quantum secure direct communication using the orbital angular momentum of single photons. Int. J. Theor. Phys. 55(3), 1–9 (2015)

    Google Scholar 

  15. Gao, T., Yan, F., Wang, Z.: Quantum secure direct communication by EPR pairs and entanglement swapping. Nuovo cimento della Societa italiana di fisica B Relat Class Stat Phys 119(3), 313–318 (2004)

    ADS  Google Scholar 

  16. Deng, F., Li, X., Li, C., et al.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359(5), 359–365 (2006)

    Article  ADS  MATH  Google Scholar 

  17. Li, X., Li, C., Deng, F., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149–5153 (2007)

    Article  Google Scholar 

  18. Wang, C., Hao, L., Song, S., et al.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8(3), 443–450 (2010)

    Article  MATH  Google Scholar 

  19. Wang, T., Li, T., Du, F., et al.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011)

    Article  ADS  Google Scholar 

  20. Gu, B., Huang, Y., Fang, X., et al.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309 (2011)

    Article  ADS  Google Scholar 

  21. Gu, B., Huang, Y., Fang, X., et al.: Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun. Theor. Phys. 56(4), 659–663 (2011)

    Article  ADS  MATH  Google Scholar 

  22. Gu, B., Zhang, C., Cheng, G., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)

    Article  ADS  Google Scholar 

  23. Ren, B., Wei, H., Hua, M., et al.: Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur. Phys. J. D 67(2), 30 (2013)

    Article  ADS  Google Scholar 

  24. Zhao, X., Li, J., Niu, P., et al.: Two-step quantum secure direct communication scheme with frequency coding. Chin. Phys. B 26(3), 030302 (2017)

    Article  ADS  Google Scholar 

  25. Wang, C., Deng, F., Long, G.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253(1–3), 15–20 (2005)

    Article  ADS  Google Scholar 

  26. Wang, C., Deng, F., Li, Y., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  27. Shi, J., Gong, Y., Xu, P., et al.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56(5), 831–836 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Gao, G., Fang, M., Yang, R.: Quantum secure direct communication by swapping entanglements of \(3\times 3\)-dimensional Bell states. Int. J. Theor. Phys. 50(3), 882–887 (2011)

    Article  MATH  Google Scholar 

  29. Sun, Z., Du, R., Long, D.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51(6), 1946–1952 (2012)

    Article  MATH  Google Scholar 

  30. Zheng, C., Long, G., et al.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57(7), 1238–1243 (2014)

    Article  ADS  Google Scholar 

  31. Jin, X., Ji, X., Zhang, Y., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1–2), 67–70 (2006)

    Article  ADS  Google Scholar 

  32. Wang, M., Yan, F.: Three-party simultaneous quantum secure direct communication scheme with EPR pairs. Chin. Phys. Lett. 24(9), 2486 (2007)

    Article  ADS  Google Scholar 

  33. Xia, Y., Man, Z.: Controlled quantum N-party simultaneous direct communication. Commun. Theor. Phys. 48(1), 79–82 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. Chong, S., Hwang, T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284(1), 515–518 (2011)

    Article  ADS  Google Scholar 

  35. He, Y., Ma, W.: Three-party quantum secure direct communication against collective noise. Quantum Inf. Process. 16(10), 252 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Chen, S., Zhou, L., Zhong, W., et al.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61(9), 90312 (2018)

    Article  ADS  Google Scholar 

  37. Liu, Z., Chen, H.: Analysis and improvement of large payload bidirectional quantum secure direct communication without information leakage. Int. J. Theor. Phys. 57(2), 311–321 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cao, Z., Li, Y., Peng, J., et al.: Controlled quantum secure direct communication protocol based on huffman compression coding. Int. J. Theor. Phys. 57(12), 3632–3642 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tsai, C., Hwang, T.: Six-qubit decoherence-free state measurement method and its application to development of authenticated quantum secure direct communication protocol. Int. J. Theor. Phys. 57(8), 2513–2522 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shang, Y., Yu, W., Li, M., et al.: Quantum communication protocols by quantum walks with two coins. EPL 124(6), 60009 (2019)

    Article  Google Scholar 

  41. Niu, P., Zhou, Z., Lin, Z., et al.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63(20), 1345–1350 (2018)

    Article  Google Scholar 

  42. Zhou, Z., Sheng, Y., Niu, P.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63(3), 230362 (2020)

    Article  Google Scholar 

  43. Gao, Z., Li, T., Li, Z.: Long-distance measurement-device-independent quantum secure direct communication. EPL 125(4), 40004 (2019)

    Article  ADS  Google Scholar 

  44. Zhou, L., Sheng, Y., Long, G.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65(1), 12–20 (2020)

    Article  Google Scholar 

  45. Hu, J., Yu, B., Jing, M., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)

    Article  Google Scholar 

  46. Zhang, W., Ding, D., Sheng, Y., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  47. Zhu, F., Zhang, W., Sheng, Y., et al.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)

    Article  Google Scholar 

  48. Chen, Y., Chen, Y., Yu, I.: High-efficiency coherent light storage for the application of quantum memory. AAPPS Bull. 26(5), 3–8 (2016)

    Google Scholar 

  49. Shapiro, J., Boroson, D., Dixon, P., et al.: Quantum low probability of intercept. J. Opt. Soc. Am. B 36(3), B41–B50 (2019)

    Article  Google Scholar 

  50. Lum, D., Howell, J., Allman, M., et al.: A quantum enigma machine: experimentally demonstrating quantum data locking. Phys. Rev. A 94(2), 022315 (2016)

    Article  ADS  Google Scholar 

  51. Wu, J., Lin, Z., Yin, L., et al.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1(4), e26 (2019)

    Article  Google Scholar 

  52. Qi, R., Sun, Z., Lin, Z.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8(1), 22 (2019)

    Article  ADS  Google Scholar 

  53. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Boyer, M., Gelles, R., Kenigsberg, D., et al.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Zou, X., Qiu, D.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)

    Article  ADS  Google Scholar 

  56. Gu, J., Lin, P., Hwang, T.: Double C-NOT attack and counterattack on three-step semi-quantum secure direct communication protocol. Quantum Inf. Process. 17(7), 182 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Xie, C., Li, L., Situ, H., et al.: Semi-quantum secure direct communication scheme based on bell states. Int. J. Theor. Phys. 57(6), 1881–1887 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yang, C., Tsai, C.: Advanced semi-quantum secure direct communication protocol based on bell states against flip attack. Quantum Inf. Process. 19(4), 126 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  59. Zhang, M., Li, H., Xia, Z., et al.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)

    Article  ADS  MATH  Google Scholar 

  60. Sun, Y., Yan, L., Chang, Y., et al.: Two semi-quantum secure direct communication protocols based on Bell states. Mod. Phys. Lett. A 34(1), 1950004 (2019)

    Article  ADS  Google Scholar 

  61. Rong, Z., Qiu, D., Zou, X.: Semi-quantum secure direct communication with entanglement. Int. J. Theor. Phys. 59, 1807–1819 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  62. Rong, Z., Qiu, D., Zou, X.: Two single-state semi-quantum secure direct communication protocols based on single photons. Int. J. Mod. Phys. B 34(11), 2050106 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Luo, Y., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15(2), 947–958 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Almousa, S., Barbeau, M.: Delay and reflection attacks in authenticated semi-quantum direct communications. In: 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, pp. 1–7. IEEE (2016)

  65. Lu, H., Barbeau, M., Nayak, A.: Economic no-key semi-quantum direct communication protocol. In: 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, pp. 1–7. IEEE (2016)

  66. Lu, H., Barbeau, M., Nayak, A.: Keyless semi-quantum point-to-point communication protocol with low resource requirements. Sci. Rep. 9(64), 1–15 (2019)

    Google Scholar 

  67. Tao, Z., Chang, Y., Zhang, S., et al.: Two semi-quantum direct communication protocols with mutual authentication based on Bell states. Int. J. Theor. Phys. 58(14), 2986–2993 (2019)

    Article  MATH  Google Scholar 

  68. Wang, M., Liu, J., Gong, L.: Semiquantum secure direct communication with authentication based on single-photons. Int. J. Quantum Inf. 17(3), 1950024 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  69. Krawec, W.: Mediated semiquantum key distribution. Phys. Rev. A 91, 032323 (2015)

    Article  ADS  Google Scholar 

  70. Liu, Z., Hwang, T.: Mediated semi-quantum key distribution without invoking quantum measurement. Ann. Phys. 530(4), 1700206 (2018)

    Article  MathSciNet  Google Scholar 

  71. Lin, P., Tsai, C., Hwang, T.: Mediated semi-quantum key distribution using single photons. Ann. Phys. 531(8), 1800374 (2019)

    Article  MathSciNet  Google Scholar 

  72. Massa, F., Yadav, P., Moqanaki, A., et al.: Experimental Quantum Cryptography with Classical Users. arXiv preprint arXiv:1908.01780 (2019)

  73. Tsai, C., Yang, C., Lee, N.: Lightweight mediated semi-quantum key distribution protocol. Mod. Phys. Lett. A 34(34), 1950281 (2019)

    Article  ADS  Google Scholar 

  74. Tsai, C., Yang, C.: Lightweight Mediated Semi-Quantum Key Distribution Protocol with a Dishonest Third Party based on Bell States. arXiv preprint arXiv:1909.02788 (2019)

  75. Krawec, W.: Multi-mediated semi-quantum key distribution. In: 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, pp. 1–6. IEEE (2019)

  76. Deng, F., Long, G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  77. Shannon, C.: Communication theory of secrecy systems. Bell Syst. Technol. J. 28(4), 656–715 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  78. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for important suggestions that help us improve the quality of the manuscript. This work was partly supported by the National Natural Science Foundation of China (Nos. 61572532, 61876195), the Natural Science Foundation of Guangdong Province of China (No. 2017B030311011), and the Science and Technology Project of Jiangmen City of China (Nos. 2018JC01008, 2018JC01019, 2019JC01030), and Instituto de Telecomunicações via FCT from UIDB/EEA/50008/2020. X. Zou is supported by NSFC (No. 61871205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daowen Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Z., Qiu, D., Mateus, P. et al. Mediated semi-quantum secure direct communication. Quantum Inf Process 20, 58 (2021). https://doi.org/10.1007/s11128-020-02965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02965-2

Keywords

Navigation