Abstract
We propose a quantum algorithm to estimate the Gowers \(U_2\) norm of a Boolean function, and extend it into a second algorithm to distinguish between linear Boolean functions and Boolean functions that are \(\epsilon \)-far from the set of linear Boolean functions, which seems to perform better than the classical BLR algorithm. Finally, we outline an algorithm to estimate Gowers \(U_3\) norms of Boolean functions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bera, D., Maitra, S., Tharrmashastha, S.: Efficient quantum algorithms related to autocorrelation spectrum. In: Hao, F., Ruj, S., Gupta, S.S. (eds.) Progress in Cryptology—INDOCRYPT 2019—20th International Conference on Cryptology in India, Hyderabad, India, December 15–18, 2019, LNCS 11898, pp. 415–432. Springer (2019). https://doi.org/10.1007/978-3-030-35423-7_21
Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. J. Comput. Syst. Sci. 47(3), 549–595 (1993)
Carlet, C.: Recursive lower bounds on the nonlinearity profile of Boolean functions and their applications. IEEE Trans. Inf. Theory 54(3), 1262–1272 (2008)
Chen, V.Y.: The Gowers’ norm in the testing of Boolean functions. Ph.D. thesis, Massachusetts Institute of Technology (2009)
Cusick, T., Stănică, P.: Cryptographic Boolean Functions and Applications, 2nd edn. Elsevier, Amsterdam (2017)
Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A 439, 553–558 (1992)
Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 25–32
Gowers, W.T.: A new proof of Szemerédi’s theorem. Geom. Funct. Anal. GAFA 11(3), 465–588 (2001)
Green, B., Tao, T.: An inverse theorem for the Gowers \({U}_3\) norm. Proc. Edinb. Math. Soc. 51, 75–153 (2008)
Hillery, M., Andersson, E.: Quantum tests for the linearity and permutation invariance of Boolean functions. Phys. Rev. A 84, 062329 (2011). https://doi.org/10.1103/PhysRevA.84.062329
Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)
Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transforms and learnability. J. ACM 40(3), 607–620 (1993)
Maitra, S., Mukhopadhyay, P.: The Deutsch–Jozsa algorithm revisited in the domain of cryptographically significant Boolean functions. Int. J. Quantum Inf. 03(02), 359–370 (2005)
Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2011)
O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cambridge (2014)
Rieffel, E., Polak, W.: Quantum Computing: A Gentle Introduction, 1st edn. The MIT Press, Cambridge (2011)
Valiant, L.: A theory of learnable. Commun. ACM 27(11), 1134–1142 (1984)
Xie, Z., Qiu, D., Cai, G.: Quantum algorithms on Walsh transform and Hamming distance for Boolean functions. Quantum Inf. Process. 17, 139 (2018)
Acknowledgements
Research of C. A. Jothishwaran and Sugata Gangopadhyay is a part of the project “Design and Development of Quantum Computing Toolkit and Capacity Building” sponsored by the Ministry of Electronics and Information Technology (MeitY) of the Government of India.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix: Generalization to higher Gowers norms
Appendix: Generalization to higher Gowers norms
The same technique can be used for other Gowers norms. For instance, we can apply the unitary transformation \(H_n^{\otimes 4}\circ \mathfrak D_F^3\) to the state \(2^{-2n}\sum _{x\in {\mathbb {F}}_2^n}\sum _{a\in {\mathbb {F}}_2^n}\sum _{b\in {\mathbb {F}}_2^n}\sum _{c\in {\mathbb {F}}_2^n}|x\rangle |a\rangle |b\rangle |c\rangle \), where, with notation \(M_i^j=\mathrm{MCNOT}_i^j\) and \(U_F^3=U_F\otimes I\otimes I\otimes I\),
We obtain thus the state \(\sum _{a^{\prime },b^{\prime },b^{\prime },x^{\prime }\in {\mathbb {F}}_2^n}2^{-4n} \sum _{a,b,c,x\in {\mathbb {F}}_2^n}(-1)^{\varDelta _{a,b,c}F(x)}|x,a,b,c\rangle \). Then, \(\mathrm{Pr}[x^{\prime }=a^{\prime }=b^{\prime }=c^{\prime }=0_n]=\left( 2^{-4n}\sum _{a,b,c,x\in {\mathbb {F}}_2^n}(-1)^{\varDelta _{a,b,c}F(x)}\right) ^2\), and, using (11), \(\mathrm{Pr}[x^{\prime }=a^{\prime }=b^{\prime }=c^{\prime }=0_n]= \left( \Vert f\Vert _{U_3}^8\right) ^2=\Vert f\Vert _{U_3}^{16}\).
Rights and permissions
About this article
Cite this article
Jothishwaran, C.A., Tkachenko, A., Gangopadhyay, S. et al. A quantum algorithm to estimate the Gowers \(U_2\) norm and linearity testing of Boolean functions. Quantum Inf Process 19, 311 (2020). https://doi.org/10.1007/s11128-020-02817-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02817-z