Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Pieceable fault tolerant conversion between 5-qubit code and 7-CSS code

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a non-transversal but pieceable fault tolerant conversion circuit that is used to convert encoded information between five-qubit code and seven-qubit CSS code. Since a syndrome extraction circuit requiring fewer ancillary qubit resources would facilitate the realization of large-scale quantum computations, we further adapt a flag-assisted fault tolerant syndrome measurement scheme to reduce the cost of ancillary preparation. Numerical simulations are also performed to further analyze the performance of our conversion method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70(5), 052328 (2004)

    Article  ADS  Google Scholar 

  2. Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6(2), 97–165 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Anderson, J.T., Duclos-Cianci, G., Poulin, D.: Fault-tolerant conversion between the steane and reed-muller quantum codes. Phys. Rev. Lett. 113(8), 080501 (2014)

    Article  ADS  Google Scholar 

  4. Baireuther, P., Caio, M., Criger, B., Beenakker, C.W., O’Brien, T.E.: Neural network decoder for topological color codes with circuit level noise. New J. Phys. 21(1), 013003 (2019)

    Article  ADS  Google Scholar 

  5. Campbell, E.T., Terhal, B.M., Vuillot, C.: Roads towards fault-tolerant universal quantum computation. Nature 549(7671), 172 (2017)

    Article  ADS  Google Scholar 

  6. Chamberland, C., Jochym-O’Connor, T., Laflamme, R.: Thresholds for universal concatenated quantum codes. Phys. Rev. Lett. 117(1), 010501 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  7. Chamberland, C., Jochym-O’Connor, T., Laflamme, R.: Overhead analysis of universal concatenated quantum codes. Phys. Rev. A 95(2), 022313 (2017)

    Article  ADS  Google Scholar 

  8. Chao, R., Reichardt, B.W.: Fault-tolerant quantum computation with few qubits. npj Quantum Inf. 4(1), 42 (2018)

    Article  ADS  Google Scholar 

  9. Colladay, K.R., Mueller, E.J.: Rewiring stabilizer codes. New J. Phys. 20(8), 083030 (2018)

    Article  ADS  Google Scholar 

  10. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014). arXiv:1411.4028

  11. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  12. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86(3), 032324 (2012)

    Article  ADS  Google Scholar 

  13. Gottesman, D.: An introduction to quantum error correction and fault-tolerant quantum computation. In: Quantum Information Science and Its Contributions to Mathematics. Proceedings of Symposia in Applied Mathematics, vol. 68, pp. 13–58 (2010)

  14. Gottesman, D.: Fault-tolerant quantum computation with constant overhead. Quantum Inf. Comput. 14(15–16), 1338–1372 (2014)

    MathSciNet  Google Scholar 

  15. Gottesman, D.E.: Stabilizer codes and quantum error correction. Ph.D. thesis, California Institute of Technology (1997)

  16. Hill, C.D., Fowler, A.G., Wang, D.S., Hollenberg, L.C.: Fault-tolerant quantum error correction code conversion. Quantum Inf. Comput. 13(5–6), 439–451 (2013)

    MathSciNet  Google Scholar 

  17. Hwang, Y., Choi, B.S., Ko, Y.c., Heo, J.: Fault-tolerant conversion between stabilizer codes by clifford operations (2015). arXiv:1511.02596

  18. Knill, E., Laflamme, R., Zurek, W.: Accuracy threshold for quantum computation (1996). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.8881

  19. Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S.V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., et al.: A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360(6385), 195–199 (2018)

  20. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information (2000). https://books.google.com.sg/books?id=-s4DEy7o-a0C&printsec=frontcover&dq=quantum+computation+and+quantum+information&hl=zh-CN&sa=X&ved=2ahUKEwjf04mj48vqAhXT7XMBHQBaA8QQ6AEwAHoECAAQAg#v=onepage&q=quantum%20computation%20and%20quantum%20information&f=false

  21. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)

  22. Raginsky, M.: Scaling and renormalization in fault-tolerant quantum computers. Quantum Inf. Process. 2(3), 249–258 (2003)

    Article  MathSciNet  Google Scholar 

  23. Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of 37th Annual Symposium on Foundations of Computer Science, 1996, pp. 56–65. IEEE (1996)

  24. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  25. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  26. Tansuwannont, T.: Flag fault-tolerant error correction for cyclic css codes. Master’s thesis, University of Waterloo (2018)

  27. Wecker, D., Svore, K.M.: Liqui\(\vert >\): A software design architecture and domain-specific language for quantum computing (2014). arXiv:1402.4467

  28. Weinstein, Y.S.: Syndrome measurement order for the [[7, 1, 3]] quantum error correction code. Quantum Inf. Process. 15(3), 1263–1271 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  29. Yoder, T.J., Takagi, R., Chuang, I.L.: Universal fault-tolerant gates on concatenated stabilizer codes. Phys. Rev. X 6(3), 031039 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61572109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoWu Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A The change of non-constant stabilizers

Appendix A The change of non-constant stabilizers

Here, we use Tables 7, 8 and 9 to list the transformations of the non-constant stabilizers in the 5-qubit code block A and 7-qubit code block B under the conjugate action of the Circuit \(\varGamma (Z,Z)\).

Table 7 Stabilizer generator generators \((Z_{0}X_{2}Z_{3}Y_{4})_{A}\otimes (I^{\otimes 7})_{B}\) under the conjugate action of \(\varGamma (Z,Z)\)
Table 8 Stabilizer generator generators \((I^{\otimes 5})_{A}\otimes (X_{0}X_{2}X_{4}X_{6})_{B}\) under the conjugate action of \(\varGamma (Z,Z)\)
Table 9 Stabilizer generator generators \((I^{\otimes 5})_{A}\otimes (X_{1}X_{2}X_{5}X_{6})_{B}\) under the conjugate action of \(\varGamma (Z,Z)\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Yang, G., Luo, Q. et al. Pieceable fault tolerant conversion between 5-qubit code and 7-CSS code. Quantum Inf Process 19, 243 (2020). https://doi.org/10.1007/s11128-020-02740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02740-3

Keywords

Navigation