Abstract
We propose a non-transversal but pieceable fault tolerant conversion circuit that is used to convert encoded information between five-qubit code and seven-qubit CSS code. Since a syndrome extraction circuit requiring fewer ancillary qubit resources would facilitate the realization of large-scale quantum computations, we further adapt a flag-assisted fault tolerant syndrome measurement scheme to reduce the cost of ancillary preparation. Numerical simulations are also performed to further analyze the performance of our conversion method.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70(5), 052328 (2004)
Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6(2), 97–165 (2006)
Anderson, J.T., Duclos-Cianci, G., Poulin, D.: Fault-tolerant conversion between the steane and reed-muller quantum codes. Phys. Rev. Lett. 113(8), 080501 (2014)
Baireuther, P., Caio, M., Criger, B., Beenakker, C.W., O’Brien, T.E.: Neural network decoder for topological color codes with circuit level noise. New J. Phys. 21(1), 013003 (2019)
Campbell, E.T., Terhal, B.M., Vuillot, C.: Roads towards fault-tolerant universal quantum computation. Nature 549(7671), 172 (2017)
Chamberland, C., Jochym-O’Connor, T., Laflamme, R.: Thresholds for universal concatenated quantum codes. Phys. Rev. Lett. 117(1), 010501 (2016)
Chamberland, C., Jochym-O’Connor, T., Laflamme, R.: Overhead analysis of universal concatenated quantum codes. Phys. Rev. A 95(2), 022313 (2017)
Chao, R., Reichardt, B.W.: Fault-tolerant quantum computation with few qubits. npj Quantum Inf. 4(1), 42 (2018)
Colladay, K.R., Mueller, E.J.: Rewiring stabilizer codes. New J. Phys. 20(8), 083030 (2018)
Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014). arXiv:1411.4028
Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)
Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86(3), 032324 (2012)
Gottesman, D.: An introduction to quantum error correction and fault-tolerant quantum computation. In: Quantum Information Science and Its Contributions to Mathematics. Proceedings of Symposia in Applied Mathematics, vol. 68, pp. 13–58 (2010)
Gottesman, D.: Fault-tolerant quantum computation with constant overhead. Quantum Inf. Comput. 14(15–16), 1338–1372 (2014)
Gottesman, D.E.: Stabilizer codes and quantum error correction. Ph.D. thesis, California Institute of Technology (1997)
Hill, C.D., Fowler, A.G., Wang, D.S., Hollenberg, L.C.: Fault-tolerant quantum error correction code conversion. Quantum Inf. Comput. 13(5–6), 439–451 (2013)
Hwang, Y., Choi, B.S., Ko, Y.c., Heo, J.: Fault-tolerant conversion between stabilizer codes by clifford operations (2015). arXiv:1511.02596
Knill, E., Laflamme, R., Zurek, W.: Accuracy threshold for quantum computation (1996). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.8881
Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S.V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., et al.: A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360(6385), 195–199 (2018)
Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information (2000). https://books.google.com.sg/books?id=-s4DEy7o-a0C&printsec=frontcover&dq=quantum+computation+and+quantum+information&hl=zh-CN&sa=X&ved=2ahUKEwjf04mj48vqAhXT7XMBHQBaA8QQ6AEwAHoECAAQAg#v=onepage&q=quantum%20computation%20and%20quantum%20information&f=false
Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)
Raginsky, M.: Scaling and renormalization in fault-tolerant quantum computers. Quantum Inf. Process. 2(3), 249–258 (2003)
Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of 37th Annual Symposium on Foundations of Computer Science, 1996, pp. 56–65. IEEE (1996)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)
Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)
Tansuwannont, T.: Flag fault-tolerant error correction for cyclic css codes. Master’s thesis, University of Waterloo (2018)
Wecker, D., Svore, K.M.: Liqui\(\vert >\): A software design architecture and domain-specific language for quantum computing (2014). arXiv:1402.4467
Weinstein, Y.S.: Syndrome measurement order for the [[7, 1, 3]] quantum error correction code. Quantum Inf. Process. 15(3), 1263–1271 (2016)
Yoder, T.J., Takagi, R., Chuang, I.L.: Universal fault-tolerant gates on concatenated stabilizer codes. Phys. Rev. X 6(3), 031039 (2016)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant No. 61572109.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A The change of non-constant stabilizers
Rights and permissions
About this article
Cite this article
Lin, C., Yang, G., Luo, Q. et al. Pieceable fault tolerant conversion between 5-qubit code and 7-CSS code. Quantum Inf Process 19, 243 (2020). https://doi.org/10.1007/s11128-020-02740-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02740-3