Abstract
Quantum Fisher information as an important quantity in quantum metrology determines the upper bound of the measurement accuracy. It is shown that the quantum feature such as entanglement can improve quantum Fisher information in some cases. Here we study how quantum coherence affects the quantum Fisher information from a general point of view. We find out that the bounds induced by the superposed states can well restrict the quantum Fisher information in a general parameter estimation scheme. As applications, we demonstrate these bounds by a parameter estimation process with the superposition input state undergoing different quantum channels.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)
Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)
Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)
Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)
Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)
Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource (2017). arXiv:1609.02439v2
Linden, N., Popescu, S., Smolin, J.A.: Entanglement of superpositions. Phys. Rev. Lett. 97, 100502 (2006)
Yu, C.S., Yi, X.X., Song, H.S.: Concurrence of superpositions. Phys. Rev. A 75, 022332 (2007)
Gour, G.: Reexamination of entanglement of superpositions. Phys. Rev. A 76, 052320 (2007)
Cavalcanti, D., Terra Cunha, M., Acn, A.: Multipartite entanglement of superpositions. Phys. Rev. A 76, 042329 (2007)
Niset, J., Cerf, N.J.: Tight bounds on the concurrence of quantum superpositions. Phys. Rev. A 76, 042328 (2007)
Ou, Y.C., Fan, H.: Bounds on negativity of superpositions. Phys. Rev. A 76, 022320 (2007)
Xiang, J.Y., Xiong, S.J., Hong, F.Y.: The bound of entanglement of superpositions with more than two components. Eur. Phys. J. D 47, 257 (2008)
Yu, C.S., Yi, X.X., Song, H.S.: Bounds on bipartitely shared entanglement reduced from superposed tripartite quantum states. Eur. Phys. J. D 49, 273 (2008)
Ma, K.H., Yu, C.S., Song, H.S.: A tight bound on negativity of superpositions. Eur. Phys. J. D 59, 317 (2010)
Akhtarshenas, S.J.: Concurrence of superpositions of many states. Phys. Rev. A 83, 042306 (2011)
Parashar, P., Rana, S.: Entanglement and discord of the superposition of Greenberger–Horne–Zeilinger states. Phys. Rev. A 83, 032301 (2011)
Bhar, A.: Peculiarities of bounds on states through the concept of linear superposition. J. Appl. Math. 2012, 1 (2012)
Bhar, A., Sen, A., Sarkar, D.: Character of superposed states under deterministic LOCC. Quantum Inf. Process. 12, 721 (2013)
Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)
Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981)
Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)
Braunstein, S.L., Caves, C.M., Milburn, G.J.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247, 135–173 (1996)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)
Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649(R) (1996)
Resch, K.J., Pregnell, K.L., Prevedel, R., Gilchrist, A., Pryde, G.J., O’Brien, J.L., White, A.G.: Time-reversal and super-resolving phase measurements. Phys. Rev. Lett. 98, 223601 (2007)
Dunningham, J.A., Burnett, K., Barnett, S.M.: Interferometry below the standard quantum limit with Bose–Einstein condensates. Phys. Rev. Lett. 89, 150401 (2002)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)
Anisimov, P.M., Raterman, G.M., Chiruvelli, A., Plick, W.N., Huver, S.D., Lee, H., Dowling, J.P.: Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. Phys. Rev. Lett. 104, 103602 (2010)
Escher, B.M., Filho, R.L.D.M., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406 (2011)
Pezz, L., Smerzi, A.: Ultrasensitive two-mode interferometry with single-mode number squeezing. Phys. Rev. Lett. 110, 163604 (2013)
Liu, J., Lu, X.M., Sun, Z., Wang, X.G.: Quantum multiparameter metrology with generalized entangled coherent state. J. Phys. A Math. Theor. 49, 115302 (2016)
Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865 (1997)
Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)
Pezże, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009)
Ma, J., Huang, Y.X., Wang, X., Sun, C.P.: Quantum Fisher information of the Greenberger–Horne–Zeilinger state in decoherence channels. Phys. Rev. A 84, 022302 (2011)
Sun, Z., Ma, J., Lu, X.M., Wang, X.: Fisher information in a quantum-critical environment. Phys. Rev. A 82, 022306 (2010)
Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Hyllus, P., Pezzé, L., Smerzi, A.: Useful multiparticle entanglement and sub-shot-noise sensitivity in experimental phase estimation. Phys. Rev. Lett. 107, 080504 (2011)
Strobel, H., Muessel, W., Linnemann, D., Zibold, T., Hume, D.B., Pezzé, L., Smerzi, A., Oberthaler, M.K.: Fisher information and entanglement of non-Gaussian spin states. Science 345, 424 (2014)
Berrada, K.: Non-Markovian effect on the precision of parameter estimation. Phys. Rev. A 88, 035806 (2013)
Tan, Q.S., Huang, Y., Yin, X., Kuang, L.M., Wang, X.: Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses. Phys. Rev. A 87, 032102 (2013)
Ostermann, L., Ritsch, H., Genes, C.: Protected state enhanced quantum metrology with interacting two-level ensembles. Phys. Rev. Lett. 111, 123601 (2013)
Dür, W., Skotiniotis, M., Fröwis, F., Kraus, B.: Improved quantum metrology using quantum error correction. Phys. Rev. Lett. 112, 080801 (2014)
Lu, X.M., Wang, X.G., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)
Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)
Sun, Z., Ma, J., Lu, X.M., Wang, X.G.: Fisher information in a quantum-critical environment. Phys. Rev. A 82, 022306 (2010)
Wu, S.X., Yu, C.S., Song, H.S.: Diffusion of \(CO_{2}\) in n-hexadecane determined from NMR relaxometry measurements. Phys. Lett. A 379, 1197 (2015)
Jin, G.R., Yang, W., Sun, C.P.: Quantum-enhanced microscopy with binary-outcome photon counting. Phys. Rev. A 95, 013835 (2017)
Müller, M.M., Gherardini, S., Smerzi, A., Caruso, F.: Fisher information from stochastic quantum measurements. Phys. Rev. A 94, 042322 (2016)
Fröwis, F., Sekatski, P., Dür, W.: Detecting large quantum Fisher information with finite measurement precision. Phys. Rev. Lett. 116, 090801 (2016)
Rivas, À., Luis, A.: Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. Phys. Rev. Lett. 105, 010403 (2010)
Chaves, R., Brask, J.B., Markiewicz, M., Kołodyński, J., Acìn, A.: Noisy metrology beyond the standard quantum limit. Phys. Rev. Lett. 111, 120401 (2013)
Sanders, B.C., Milbum, G.J.: Optimal quantum measurements for phase estimation. Phys. Rev. Lett. 75, 2944 (1995)
Boixo, S., Datta, A., Davis, M.J., Flammia, S.T., Shaji, A., Caves, C.M.: Quantum metrology: dynamics versus entanglement. Phys. Rev. Lett. 101, 040403 (2008)
Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)
Gammelmark, S., Mølmer, K.: Fisher information and the quantum cramér-rao sensitivity limit of continuous measurements. Phys. Rev. Lett. 112, 170401 (2014)
Dorner, U., Demkowicz-Dobrzanski, R., Smith, B.J., Lundeen, J.S., Wasilewski, W., Banaszek, K., Walmsley, I.A.: Optimal quantum phase estimation. Phys. Rev. Lett. 102, 040403 (2009)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by the National Natural Science Foundation of China, under Grant Nos. 11775040 and 11375036, and the Fundamental Research Fund for the Central Universities under Grant No. DUT18LK45.
Rights and permissions
About this article
Cite this article
Shao, Tt., Li, Dm. & Yu, Cs. The bounds of Fisher information induced by the superposed input states. Quantum Inf Process 19, 11 (2020). https://doi.org/10.1007/s11128-019-2505-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2505-1