Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The bounds of Fisher information induced by the superposed input states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum Fisher information as an important quantity in quantum metrology determines the upper bound of the measurement accuracy. It is shown that the quantum feature such as entanglement can improve quantum Fisher information in some cases. Here we study how quantum coherence affects the quantum Fisher information from a general point of view. We find out that the bounds induced by the superposed states can well restrict the quantum Fisher information in a general parameter estimation scheme. As applications, we demonstrate these bounds by a parameter estimation process with the superposition input state undergoing different quantum channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    ADS  Google Scholar 

  2. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    ADS  MathSciNet  Google Scholar 

  3. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    ADS  Google Scholar 

  4. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    ADS  Google Scholar 

  5. Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    ADS  Google Scholar 

  6. Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)

    ADS  Google Scholar 

  7. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource (2017). arXiv:1609.02439v2

  8. Linden, N., Popescu, S., Smolin, J.A.: Entanglement of superpositions. Phys. Rev. Lett. 97, 100502 (2006)

    ADS  MATH  Google Scholar 

  9. Yu, C.S., Yi, X.X., Song, H.S.: Concurrence of superpositions. Phys. Rev. A 75, 022332 (2007)

    ADS  Google Scholar 

  10. Gour, G.: Reexamination of entanglement of superpositions. Phys. Rev. A 76, 052320 (2007)

    ADS  Google Scholar 

  11. Cavalcanti, D., Terra Cunha, M., Acn, A.: Multipartite entanglement of superpositions. Phys. Rev. A 76, 042329 (2007)

    ADS  Google Scholar 

  12. Niset, J., Cerf, N.J.: Tight bounds on the concurrence of quantum superpositions. Phys. Rev. A 76, 042328 (2007)

    ADS  Google Scholar 

  13. Ou, Y.C., Fan, H.: Bounds on negativity of superpositions. Phys. Rev. A 76, 022320 (2007)

    ADS  Google Scholar 

  14. Xiang, J.Y., Xiong, S.J., Hong, F.Y.: The bound of entanglement of superpositions with more than two components. Eur. Phys. J. D 47, 257 (2008)

    ADS  MathSciNet  Google Scholar 

  15. Yu, C.S., Yi, X.X., Song, H.S.: Bounds on bipartitely shared entanglement reduced from superposed tripartite quantum states. Eur. Phys. J. D 49, 273 (2008)

    ADS  MathSciNet  Google Scholar 

  16. Ma, K.H., Yu, C.S., Song, H.S.: A tight bound on negativity of superpositions. Eur. Phys. J. D 59, 317 (2010)

    ADS  Google Scholar 

  17. Akhtarshenas, S.J.: Concurrence of superpositions of many states. Phys. Rev. A 83, 042306 (2011)

    ADS  Google Scholar 

  18. Parashar, P., Rana, S.: Entanglement and discord of the superposition of Greenberger–Horne–Zeilinger states. Phys. Rev. A 83, 032301 (2011)

    ADS  Google Scholar 

  19. Bhar, A.: Peculiarities of bounds on states through the concept of linear superposition. J. Appl. Math. 2012, 1 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Bhar, A., Sen, A., Sarkar, D.: Character of superposed states under deterministic LOCC. Quantum Inf. Process. 12, 721 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  22. Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981)

    ADS  Google Scholar 

  23. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Braunstein, S.L., Caves, C.M., Milburn, G.J.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247, 135–173 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)

    ADS  Google Scholar 

  26. Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649(R) (1996)

    ADS  Google Scholar 

  27. Resch, K.J., Pregnell, K.L., Prevedel, R., Gilchrist, A., Pryde, G.J., O’Brien, J.L., White, A.G.: Time-reversal and super-resolving phase measurements. Phys. Rev. Lett. 98, 223601 (2007)

    ADS  Google Scholar 

  28. Dunningham, J.A., Burnett, K., Barnett, S.M.: Interferometry below the standard quantum limit with Bose–Einstein condensates. Phys. Rev. Lett. 89, 150401 (2002)

    ADS  Google Scholar 

  29. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    ADS  MathSciNet  Google Scholar 

  30. Anisimov, P.M., Raterman, G.M., Chiruvelli, A., Plick, W.N., Huver, S.D., Lee, H., Dowling, J.P.: Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. Phys. Rev. Lett. 104, 103602 (2010)

    ADS  Google Scholar 

  31. Escher, B.M., Filho, R.L.D.M., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406 (2011)

    Google Scholar 

  32. Pezz, L., Smerzi, A.: Ultrasensitive two-mode interferometry with single-mode number squeezing. Phys. Rev. Lett. 110, 163604 (2013)

    ADS  Google Scholar 

  33. Liu, J., Lu, X.M., Sun, Z., Wang, X.G.: Quantum multiparameter metrology with generalized entangled coherent state. J. Phys. A Math. Theor. 49, 115302 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865 (1997)

    ADS  Google Scholar 

  35. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)

    ADS  Google Scholar 

  36. Pezże, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009)

    ADS  MathSciNet  Google Scholar 

  37. Ma, J., Huang, Y.X., Wang, X., Sun, C.P.: Quantum Fisher information of the Greenberger–Horne–Zeilinger state in decoherence channels. Phys. Rev. A 84, 022302 (2011)

    ADS  Google Scholar 

  38. Sun, Z., Ma, J., Lu, X.M., Wang, X.: Fisher information in a quantum-critical environment. Phys. Rev. A 82, 022306 (2010)

    ADS  Google Scholar 

  39. Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Hyllus, P., Pezzé, L., Smerzi, A.: Useful multiparticle entanglement and sub-shot-noise sensitivity in experimental phase estimation. Phys. Rev. Lett. 107, 080504 (2011)

    ADS  Google Scholar 

  40. Strobel, H., Muessel, W., Linnemann, D., Zibold, T., Hume, D.B., Pezzé, L., Smerzi, A., Oberthaler, M.K.: Fisher information and entanglement of non-Gaussian spin states. Science 345, 424 (2014)

    ADS  Google Scholar 

  41. Berrada, K.: Non-Markovian effect on the precision of parameter estimation. Phys. Rev. A 88, 035806 (2013)

    ADS  Google Scholar 

  42. Tan, Q.S., Huang, Y., Yin, X., Kuang, L.M., Wang, X.: Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses. Phys. Rev. A 87, 032102 (2013)

    ADS  Google Scholar 

  43. Ostermann, L., Ritsch, H., Genes, C.: Protected state enhanced quantum metrology with interacting two-level ensembles. Phys. Rev. Lett. 111, 123601 (2013)

    ADS  Google Scholar 

  44. Dür, W., Skotiniotis, M., Fröwis, F., Kraus, B.: Improved quantum metrology using quantum error correction. Phys. Rev. Lett. 112, 080801 (2014)

    ADS  Google Scholar 

  45. Lu, X.M., Wang, X.G., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)

    ADS  Google Scholar 

  46. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)

    ADS  Google Scholar 

  47. Sun, Z., Ma, J., Lu, X.M., Wang, X.G.: Fisher information in a quantum-critical environment. Phys. Rev. A 82, 022306 (2010)

    ADS  Google Scholar 

  48. Wu, S.X., Yu, C.S., Song, H.S.: Diffusion of \(CO_{2}\) in n-hexadecane determined from NMR relaxometry measurements. Phys. Lett. A 379, 1197 (2015)

    ADS  Google Scholar 

  49. Jin, G.R., Yang, W., Sun, C.P.: Quantum-enhanced microscopy with binary-outcome photon counting. Phys. Rev. A 95, 013835 (2017)

    ADS  Google Scholar 

  50. Müller, M.M., Gherardini, S., Smerzi, A., Caruso, F.: Fisher information from stochastic quantum measurements. Phys. Rev. A 94, 042322 (2016)

    ADS  Google Scholar 

  51. Fröwis, F., Sekatski, P., Dür, W.: Detecting large quantum Fisher information with finite measurement precision. Phys. Rev. Lett. 116, 090801 (2016)

    ADS  MathSciNet  Google Scholar 

  52. Rivas, À., Luis, A.: Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. Phys. Rev. Lett. 105, 010403 (2010)

    ADS  Google Scholar 

  53. Chaves, R., Brask, J.B., Markiewicz, M., Kołodyński, J., Acìn, A.: Noisy metrology beyond the standard quantum limit. Phys. Rev. Lett. 111, 120401 (2013)

    ADS  Google Scholar 

  54. Sanders, B.C., Milbum, G.J.: Optimal quantum measurements for phase estimation. Phys. Rev. Lett. 75, 2944 (1995)

    ADS  Google Scholar 

  55. Boixo, S., Datta, A., Davis, M.J., Flammia, S.T., Shaji, A., Caves, C.M.: Quantum metrology: dynamics versus entanglement. Phys. Rev. Lett. 101, 040403 (2008)

    ADS  Google Scholar 

  56. Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)

    ADS  Google Scholar 

  57. Gammelmark, S., Mølmer, K.: Fisher information and the quantum cramér-rao sensitivity limit of continuous measurements. Phys. Rev. Lett. 112, 170401 (2014)

    ADS  Google Scholar 

  58. Dorner, U., Demkowicz-Dobrzanski, R., Smith, B.J., Lundeen, J.S., Wasilewski, W., Banaszek, K., Walmsley, I.A.: Optimal quantum phase estimation. Phys. Rev. Lett. 102, 040403 (2009)

    ADS  Google Scholar 

  59. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-shui Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China, under Grant Nos. 11775040 and 11375036, and the Fundamental Research Fund for the Central Universities under Grant No. DUT18LK45.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Tt., Li, Dm. & Yu, Cs. The bounds of Fisher information induced by the superposed input states. Quantum Inf Process 19, 11 (2020). https://doi.org/10.1007/s11128-019-2505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2505-1

Keywords

Navigation