Abstract
In this paper, an orbital angular momentum (OAM)-encoded measurement device independent quantum key distribution (MDI-QKD) under atmospheric turbulence is analyzed. The turbulent effect on scattering the OAM states is quantified by the probability of receiving the initial OAM modes, in conjunction with Kolmogorov and non-Kolmogorov models. The key rates of the OAM-encoded MDI-QKD are obtained under various turbulent intensity. Simulation results show that with the increase in radial coordinate, the initial OAM states are gradually diverted to adjacent modes and eventually tend to be randomly distributed. Furthermore, the OAM-encoded MDI-QKD has a slightly longer maximum transmission distance than that of the polarization-encoded MDI-QKD.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Lo, H.K., Lütkenhaus, N.: Quantum cryptography: from theory to practice. Physics 63(4), 191–196 (2007)
Rongzhen, J., Shaojie, T., Chao, Z.: Analysis of statistical fluctuation in decoy state quantum key distribution system. Acta Phys. Sin. 61(5), 296–298 (2012)
Gottesman, D., Lo, H.K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices information theory. Quantum Inf. Comput. 4(5), 136 (2003)
Wang, M., Wu, R.B., Lin, J.T., Zhang, J.H., Fang, Z.W., Chai, Z.F., Sun, H.Y.: Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (LNOI). Quant. Eng. 1(1), e9 (2019)
Yuan, Z.L.: Avoiding the blinding attack in QKD. Nat. Photonics 4(4), 800–801 (2010)
Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78(4), 042333 (2008)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)
Ma, X.F., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement device-independent quantum key distribution. Phys. Rev. A 86(5), 052305 (2012)
Sun, S.H., Gao, M., Li, C.Y., et al.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87(5), 052329 (2013)
Da Silva, T.F., Vitoreti, D., Xavier, G., Amral, G., Temporão, G.P., Weid, J.P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88(5), 052303 (2012)
Liu, Y., Chen, T.Y., Wang, L.J., Liang, H., Shentu, G.L., Wang, J., Cui, K., Yin, H.L., Liu, N.L., Li, L., Ma, X.F., Fejer, M.M., Peng, C.Z., Zhang, Q., Pan, J.W.: Experimental measurement- device-independent quantum key distribution. Phys. Rev. Lett. 111(13), 130502 (2012)
Tang, Z.Y., Liao, Z.F., Xu, F.H., Qi, B., Li, Q., Lo, H.B.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 12(19), 190503 (2013)
Tang, Y.L., Yin, H.L., Chen, S.J., Liu, Y., Zhang, W.J., Jiang, X., Zhang, L., Wang, J., You, L.X., Guan, J.Y., Yang, D.X., Wang, Z., Liang, H., Zhang, Z., Zhou, N., Ma, X.F., Chen, T.Y., Zhang, Q., Pan, J.W.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113(19), 190501 (2014)
Zhang, Y.C., Li, Z.Y., Yu, S., Gu, W.Y., Peng, X., Guo, H.: Continuous-variable measurement- device-independent quantum key distribution using squeezed states. Phys. Rev. A 90(5), 052325 (2014)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)
Qi, R.Y., Sun, Z., Lin, Z.S., Niu, P.H., Hao, W.T., Song, L.Y., Huang, Q., Gao, J.C., Yin, L.G., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8(1), 22 (2019)
Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.U.: Measurement-device-independent quantum secure direct communication. arXiv:1805.07228 preprint (2018)
Niu, P.H., Zhou, Z.R., Lin, Z.S., Sheng, Y.B., Yin, L.B., Long, G.L.: Measurement- device-independent quantum communication without encryption. Sci. Bull. 63(20), 1345–1350 (2018)
Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, C., Rarity, G.J., Zeilinger, A.: Weinfurter: experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)
Yin, J., Ren, J.G., Lu, H., Cao, Y., Yong, H.L., Wu, Y.P., Liu, C., Liao, S.K., Zhou, F., Jiang, Y., Cai, X.D., Xu, P., Pan, G.S., Jia, J.J., Huang, Y.M., Yin, H., Chen, Y.A., Peng, C.Z., Pan, J.W.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488(7410), 185 (2012)
Yin, H.L., Chen, T.Y., Yu, Z.W., Liu, H., Zhou, Y.H., Jing, C.S., Mao, Y.Q., Huang, M.Q., Zhang, W.J., Chen, H., Li, M.J., Nolan, D.A., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.B., Pan, J.W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)
Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Wang, J.Y., Yin, J., Shen, Q., Cao, Y., Li, Z.P., Li, F.Z., Chen, X.W., Sun, L.H., Jia, J.J., Wu, J.C., Jiang, X.J., Wang, J.F., Huang, Y.M., Wang, Q., Zhou, Y.L., Deng, L., Xi, T., Ma, L., Hu, T., Zhang, Q., Chen, Y.A., Liu, N.L., Wang, X.B., Zhu, Z.C., Lu, C.Y., Shu, R., Peng, C.Z., Wang, J.Y., Pan, J.W.: Satellite-to-ground quantum key distribution. Nature 549, 7670 (2017)
Bedington, R., Arrazola, J.M., Ling, A.: Progress in satellite quantum key distribution. Nature 3, 30 (2017)
Capraro, I., Tomaello, A., Dall’Arche, A., Gerlin, F., Ursin, R., Vallone, G., Villoresi, P.: Impact of turbulence in long range quantum and classical communications. Phys. Rev. Lett. 109(20), 200502 (2012)
Vallone, G., Marangon, D.G., Canale, M., Savorgnan, I., Bacco, D., Barbieri, M., Calimani, S., Barbieri, C., Laurenti, N., Villoresi, P.: Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels. Phys. Rev. A 91(4), 6206–6207 (2015)
Goyal, S., Ibrahim, A.H., Roux, F.S., Konrad, T., Forbes, A.: Experimental orbital angular momentum-based quantum key distribution through turbulence. arXiv:1412.0788
Wang, L., Zhao, S.M., Gong, L.Y., Cheng, W.W.: Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum. Chin. Phys. B 24(12), 238–245 (2015)
Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)
He, R., An, X.: Geometric transformations of optical orbital angular momentum spatial modes. Sci. CHINA Phys. Mech. Astron. 61(2), 020314 (2018)
Tyler, G.A., Boyd, R.W.: Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Opt. Lett. 34(2), 142–144 (2009)
Acknowledgements
C. Dong is supported by the National Natural Science Foundation of China (Grant No. 11704412). C. Dong is supported by Key Research and Development Program of Shaanxi (Program No. 2019ZDLGY09-01), the Foundation of State Key Laboratory of Cryptology (Grant No. MMKFKT201823) and Foundation of National University of Defense and Technology (Grant No. ZK17-02-09).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, XY., Zhao, SH., Dong, C. et al. Orbital angular momentum-encoded measurement device independent quantum key distribution under atmospheric turbulence. Quantum Inf Process 18, 304 (2019). https://doi.org/10.1007/s11128-019-2424-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2424-1