Abstract
Quantum dialogue network, as a considerable topic, promotes high efficiency and instantaneousness in quantum communication through simultaneously deducing the secret information over the quantum channel. A new quantum network dialogue protocol is proposed based on continuous-variable GHZ states. In the protocol, the quantum dialogue could be conducted simultaneously among multiple legitimate communication parties. The security of the proposed protocol is ensured by the correlation of continuous-variable GHZ entangled states and the decoy states inserted into the GHZ states in the randomly selected time slots. In addition, the proposed quantum network dialogue protocol with continuous-variable quantum states improves the communication efficiency with the perfect utilization of quantum bits greatly.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Beige, A., Englert, B.G., Kurtsiefer, C., et al.: Secure communication with single-photon two-qubit states. J. Phys. A-Math. Gen. 35(28), 407–413 (2002)
Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91(20), 207901 (2003)
Rajna, G.: Quantum communication. Nat. Photonics 55(1), 298–303 (2016)
Tomamichel, M., Wilde, M.M., Winter, A.: Strong converse rates for quantum communication. IEEE Trans. Inf. Theory 63(1), 715–727 (2016)
Sharma, V., Thapliyal, K., Pathak, A., et al.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15(11), 4681–4710 (2016)
Deng, F.G., Gui, L.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 113–114 (2003)
Hu, J.Y., Yu, B., Gui, L.L., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2015)
Patwardhan, S., Moulick, S.R., Panigrahi, P.K.: Efficient controlled quantum secure direct communication protocols. Int. J. Theor. Phys. 55(7), 3280–3288 (2016)
Amerimehr, A., Dehkordi, M.H.: Impersonation attack on a quantum secure direct communication and authentication protocol with improvement. Appl. Phys. B 124(3), 44 (2018)
Chang, C.H., Yang, C.W., Hzu, G.R., et al.: Quantum dialogue protocols over collective noise using entanglement of GHZ state. Quantum Inf. Process. 15(7), 2971–2991 (2016)
Gong, L.H., Li, J.F., Zhou, N.R.: Multiparty quantum dialogue protocol based on continuous variable squeezed states. In: IEEE, International Conference on Nanotechnology, pp. 36–39 (2017)
Zhou, N.R., Li, J.F., Yu, Z.B., et al.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16(1), 4 (2017)
Zhou, N.R., Cheng, H.L., Liao, Q.H.: Three-party stop-wait quantum communication protocol for data link layer based on GHZ state. Int. J. Theor. Phys. 52(3), 811–819 (2013)
Yang, C.P., Su, Q.P., Nori, F.: Entanglement generation and quantum information transfer between spatially-separated qubits in different cavities. New J. Phys. 15(11), 231–239 (2013)
Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China 51(5), 559–566 (2008)
Song, T.T., Wen, Q.Y., Gao, F., et al.: Participant attack and improvement to multiparty quantum secret sharing based on GHZ states. Int. J. Theor. Phys. 52(1), 293–301 (2013)
Zhou, N.R., Wu, G.T., Gong, L.H., et al.: Secure quantum dialogue protocol based on W states without information leakage. Int. J. Theor. Phys. 52(9), 3204–3211 (2013)
Zhou, N.R., Hua, T.X., Wu, G.T., et al.: Single-photon secure quantum dialogue protocol without information leakage. Int. J. Theor. Phys. 53(11), 3829–3837 (2014)
Wang, H., Zhang, Y.Q., Liu, X.F., et al.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 15(6), 2593–2603 (2016)
Zhang, M.H., Li, H.F., Xia, Z.Q., et al.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)
Kao, S.H., Yang, C.W., Hwang, T.: Fault-tolerant controlled deterministic secure quantum communication using EPR states against collective noise. Quantum Inf. Process. 15(11), 4711–4727 (2016)
He, Y.F., Ma, W.P.: Three-party quantum secure direct communication against collective noise. Quantum Inf. Process. 16(10), 252 (2017)
Sharma, V., Thapliyal, K., Pathak, A., et al.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15(11), 4681–4710 (2016)
Wang, R.J., Li, D.F., Qin, Z.G.: An Immune quantum communication model for dephasing noise using four-qubit cluster state. Int. J. Theor. Phys. 55(1), 609–616 (2016)
Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)
Alizo, M.T.D., Bari, I., Daneshgaran, F., et al.: Capacity-approaching channel codes for discrete variable quantum key distribution (QKD) applications. In: Wireless Networks and Security, pp. 423–456. Springer, Berlin, Heidelberg (2013)
Lasota, M., Filip, R., Usenko, V.C.: Robustness of quantum key distribution with discrete and continuous variables to channel noise. Phys. Rev. A 95(6), 062312 (2016)
Kato, K., Osaki, M., Hirota, O.: Derivation of classical capacity of a quantum channel for a discrete information source. Phys. Lett. A 251(3), 157–163 (1999)
Wu, Y., Zhou, J., Gong, X., et al.: Continuous-variable measurement-device-independent multipartite quantum communication. Phys. Rev. A 93(2), 022325 (2016)
Zhou, J., Guo, Y.: Continuous-variable measurement-device-independent multipartite quantum communication using coherent states. J. Phys. Soc. Jpn. 86(2), 024003 (2017)
Su, X.L., Jia, X.J., Peng, K.C.: Quantum information processing with continuous variables based on quantum state of optical field. Prog. Phys. 36(4), 101–117 (2016)
Huang, D., Huang, P., Lin, D., et al.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)
Song, H.C., Gong, L.H., Zhou, N.R.: Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Phys. Sin. 61(15), 415–418 (2012)
Yu, Z.B., Gong, L.H., Zhu, Q.B., et al.: Efficient three-party quantum dialogue protocol based on the continuous variable GHZ states. Int. J. Theor. Phys. 55(7), 3147–3155 (2016)
Ma, Y.Y., Feng, J.X., Wan, Z.J., et al.: Continuous variable quantum entanglement at 1.34 μm. Acta Phys. Sin. 66(26), 244205 (2017)
Wan, Z.J., Feng, J.X., Cheng, J., et al.: Experimental investigation of transmission characteristics of continuous variable entangled state over optical fibers. Acta Phys. Sin. 67(2), 024203 (2018)
Luo, M.X.: Computationally efficient nonlinear Bell inequalities for quantum networks. Phys. Rev. Lett. 120(14), 140402 (2018)
Van, L.P., Braunstein, S.L.: Multipartite entanglement for continuous variables: a quantum teleportation network. Phys. Rev. Lett. 84(15), 3482–3485 (2000)
Johannesson, R., Zigangirov, K.S.: Low-Density Parity-Check Codes, p. 550. Wiley, Hoboken (2010)
Berrou, C., Glavieux, A.: Near optimum error correcting coding and decoding: turbo-codes. IEEE Trans. Commun. 44(10), 1261–1271 (1996)
Gong, L.H., Li, J.F., Zhou, N.R.: Continuous variable quantum network dialogue protocol based on single-mode squeezed states. Laser Phys. Lett. 15(10), 105204 (2018)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant Nos. 61561033 and 61462061), the Major Academic Discipline and Technical Leader of Jiangxi Province (Grant No. 20162BCB22011) and the Natural Science Foundation of Jiangxi Province (Grant No. 20171BAB202002).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gong, L., Tian, C., Li, J. et al. Quantum network dialogue protocol based on continuous-variable GHZ states. Quantum Inf Process 17, 331 (2018). https://doi.org/10.1007/s11128-018-2103-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2103-7