Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Non-classical correlations in two quantum dots coupled in a coherent resonator field under decoherence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An analytical description is obtained for two excitons; each exciton is in one of two distant quantum dots embedded in a nano-mechanical resonator which is initially prepared in a superposition of coherent states with intrinsic decoherence. We use a particular method based on the dressed states of the model Hamiltonian. The robustness of the generated non-classical correlations is investigated via the measurement-induced non-locality and geometric quantum discord, compared with the log-negativity. The three measures present generated different correlations that depend on the initial coherence states and their intensities, and intrinsic decoherence. It is witnessed that the phenomena of sudden appearance and disappearance of entanglement are occurring and repeated at chosen intervals of time; they can disappear due to the intrinsic decoherence. The correlations were observed to attain highest robustness under initial coherent state, with decoherence parameter. Quantum correlation functions survive in the stationary states, and the amount of stationary correlations could be controlled by adjusting the values of the intrinsic decoherence, the initial state of the nano-mechanical resonator and its coherence intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Treutlein, P., Genes, C., Hammerer, K., Poggio, M., Rabl, P.: Hybrid Mechanical Systems. Springer, Berlin (2014)

    Book  Google Scholar 

  2. Heiss, M., Fontana, Y., Gustafsson, A., Wüst, G., Magen, C., Oregan, D.D., Luo, J.W., Ketterer, B., Conesa-Boj, S., Kuhlmann, A., Houel, J., Russo-Averchi, E., Morante, J.R., Cantoni, M., Marzari, N., Arbiol, J., Zunger, A., Warburton, R.J., Fontcuberta-Morral, A.: Self-assembled quantum dots in a nanowire system for quantum photonics. Nat. Mater. 12, 439444 (2013)

    Article  Google Scholar 

  3. Yeo, I., De-Assis, P.-L., Gloppe, A., Dupont-Ferrier, E., Verlot, P., Malik, N.S., Dupuy, E., Claudon, J., Gérard, J.-M., Auffèves, A., Nogues, G., Seidelin, S., Poizat, J.-P., Arcizet, O., Richard, M.: Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system. Nat. Nanotechnol. 9, 106 (2014)

    Article  ADS  Google Scholar 

  4. Kremer, P.E., Dada, A.C., Kumar, P., Ma, Y., Kumar, S., Clarke, E., Gerardot, B.D.: Strain-tunable quantum dot embedded in a nanowire antenna. Phys. Rev. B90, 201408 (2014)

    Article  ADS  Google Scholar 

  5. Wilson-Rae, I., Zoller, P., Imamoǧlu, A.: Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys. Rev. Lett. 92, 075507 (2004)

    Article  ADS  Google Scholar 

  6. Deng, G.-W., Wei, D., Li, S.-X., Johansson, J.R., Kong, W.-C., Li, H.-O., Cao, G., Xiao, M., Guo, G.-C., Nori, F., Jiang, H.-W., Guo, G.-P.: Coupling two distant double quantum dots with a microwave resonator. Nano Lett. 15, 6620 (2015)

    Article  ADS  Google Scholar 

  7. Tavis, M., Cummings, F.W.: Exact solution for an N-molecule-radiation-field Hamiltonian. Phys. Rev. 170, 379 (1968)

    Article  ADS  Google Scholar 

  8. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Liu, H., Suh, S.J.: Entanglement growth during thermalization in holographic systems. Phys. Rev. D89, 066012 (2014)

    ADS  Google Scholar 

  10. Cotler, J.S., Hertzberg, M.P., Mezei, M., Mueller, M.T.: Entanglement growth after a global quench in free scalar field theory. JHEP 2016, 166 (2016)

    Article  ADS  Google Scholar 

  11. Alba, V., Calabrese, P.: Entanglement and thermodynamics after a quantum quench in integrable systems. Proc. Natl. Acad. Sci. 114, 7947 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. Islam, R., Ma, R., Preiss, P.M., Tai, M.E., Lukin, A.: Measuring entanglement entropy in a quantum many-body system. Nature 528, 77 (2015)

    Article  ADS  Google Scholar 

  13. Kaufman, A.M., Tai, M.E., Lukin, A., Rispoli, M., Schittko, R., Preiss, P.M., Greiner, M.: Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794 (2016)

    Article  ADS  Google Scholar 

  14. Kargarian, M., Jafari, R., Langari, A.: Renormalization of concurrence: the application of the quantum renormalization group to quantum-information systems. Phys. Rev. A76, 060304 (2007)

    Article  ADS  Google Scholar 

  15. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  16. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A77, 022301 (2008)

    Article  ADS  Google Scholar 

  17. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

  18. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  19. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for non-zero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  20. Datta, A.: Quantum discord between relatively accelerated observers. Phys. Rev. A80, 052304 (2009)

    Article  ADS  Google Scholar 

  21. Li, J.-Q., Liang, J.-Q.: Quantum and classical correlations in a classical dephasing environment. Phys. Lett. A 375, 1496 (2011)

    Article  ADS  Google Scholar 

  22. Mohamed, A.-B.A.: Pairwise quantum correlations of a three-qubit XY chain with phase decoherence. Quantum Inf. Process. 12, 1141 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ramzan, M.: Quantum Inf. Process. 13, 259 (2014)

  24. Mohamed, A.-B.A., Joshi, A., Hassan, S.S.: Bipartite non-local correlations in a double quantum dot excitonic system. J. Phys. A Math. Theor. 47, 335301 (2014)

    Article  MathSciNet  Google Scholar 

  25. Tian, Z., Jing, J.: Measurement-induced-nonlocality via the Unruh effect. Ann. Phys. 333, 76 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Mohamed, A.-B.A.: Quantum correlation of correlated two qubits interacting with a thermal field. Phys. Scr. 85, 055013 (2012)

    Article  ADS  Google Scholar 

  27. Zhanga, G.-F., Ji, A.-L., Fan, H., Liu, W.-M.: Quantum correlation dynamics of two qubits in noisy environments: the factorization law and beyond. Ann. Phys. 327, 2074 (2012)

    Article  ADS  Google Scholar 

  28. Mohamed, A.-B.A., Metwally, N.: Non-classical correlations based on skew information for an entangled two qubit-system with non-mutual interaction under intrinsic decoherence. Ann. Phys. 381, 137 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. Mohamed, A.-B.A.: Thermal effect on the generated quantum correlation between two superconducting qubits. Laser Phys. Lett. 13, 085202 (2016)

    Article  ADS  Google Scholar 

  30. Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A86, 024302 (2012)

    Article  ADS  Google Scholar 

  31. Paula, F.M., Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A87, 064101 (2013)

    Article  ADS  Google Scholar 

  32. Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  33. Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A44, 5401 (1991)

    Article  ADS  Google Scholar 

  34. Gardiner, C.W.: Quantum Noise. Springer, Berlin (1991)

    Book  Google Scholar 

  35. Chen, G., Bonadeo, N.H., Steel, D.G., Gammon, D., Katzer, D.S., Park, D., Sham, L.J.: Science 289, 1906 (2000)

  36. Li, G.-X., Yang, Y.-P., Allaart, K., Lenstra, D.: Entanglement for excitons in two quantum dots in a cavity injected with squeezed vacuum. Phys. Rev. A 69, 014301 (2004)

    Article  ADS  Google Scholar 

  37. He, Y., Jiang, M.: Entanglement of two optically driven quantum dots mediated by phonons in nano-mechanical resonator. Opt. Commun. 382, 580 (2017)

    Article  ADS  Google Scholar 

  38. Zhang, F., Zhao, D., Gu, Y., Chen, H., Hu, X., Gong, Q.: Detuning-determined qubit-qubit entanglement mediated by plasmons: an effective model for dissipative systems. Q. J. Appl. Phys. 121, 203105 (2017)

    Article  ADS  Google Scholar 

  39. Behzadi, N., Ahansaz, B., Shojaei, S.: Genuine entanglement among coherent excitonic states of three quantum dots located individually in separated coupled QED cavities. Eur. Phys. J. D67, 5 (2013)

    ADS  Google Scholar 

  40. Delbecq, M., Bruhat, L., Viennot, J., Datta, S., Cottet, A., Kontos, T.: Photon-mediated interaction between distant quantum dot circuits. Nat. Commun. 4, 1400 (2013)

    Article  ADS  Google Scholar 

  41. Chen, G.-Y., Lambert, N., Chou, C.-H., Chen, Y.-N., Nori, F.: Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement. Phys. Rev. B84, 045310 (2011)

    Article  ADS  Google Scholar 

  42. Gonzalez-Tudela, A., Martin-Cano, D., Moreno, E., Martin-Moreno, L., Tejedor, C., Garcia-Vidal, F.J.: Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett. 106, 020501 (2011)

    Article  ADS  Google Scholar 

  43. Lim, J., Tame, M., Yee, K.H., Lee, J.-S., Lee, J.: Phonon-induced dynamic resonance energy transfer. New J. Phys. 16, 053018 (2014)

    Article  ADS  Google Scholar 

  44. Guo, J.-L., Song, H.-S.: Entanglement between two Tavis–Cummings atoms with phase decoherence. J. Mod. Opt. 56, 496 (2009)

    Article  ADS  Google Scholar 

  45. Zheng, L., Zhang, G.-F.: Intrinsic decoherence in Jaynes–Cummings model with Heisenberg exchange interaction. Eur. Phys. J. D71, 288 (2017)

    ADS  Google Scholar 

  46. He, Q.-L., Xu, J.-B.: Enhancement of stationary state quantum discord in Tavis–Cummings model by nonlinear Kerr-like medium. Opt. Commun. 284, 3649 (2011)

    Article  ADS  Google Scholar 

  47. Fan, K.-M., Zhang, G.-F.: Geometric quantum discord and entanglement between two atoms in Tavis–Cummings model with dipole-dipole interaction under intrinsic decoherence. Eur. Phys. J. D68, 163 (2014)

    ADS  Google Scholar 

  48. Mohamed, A.-B.A.: Geometric measure of nonlocality and quantum discord of two charge qubits with phase decoherence and dipole-dipole interaction. Rep. Math. Phys. 72, 121 (2013)

    Article  ADS  Google Scholar 

  49. Obada, A.-S.F., Mohamed, A.-B.A.: Quantum correlations of two non-interacting ion’s internal electronic states with intrinsic decoherence. Opt. Commun. 309, 236 (2013)

    Article  ADS  Google Scholar 

  50. Obada, A.-S.F., Abdel-Hafez, A.M., Hessian, H.A.: Influence of intrinsic decoherence on nonclassical effects in the nondegenerate bimodal multiquanta Jaynes–Cummings model. J. Phys. B31, 5085 (1998)

    ADS  Google Scholar 

  51. Anwar, S.J., Ramzan, M., Khan, M.K.: Dynamics of entanglement and quantum Fisher information for N-level atomic system under intrinsic decoherence. Quantum Inf. Process. 16, 142 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  52. Puri, R.R., Agarwal, G.S.: Finite-Q cavity electrodynamics: dynamical and statistical aspects. Phys. Rev. A35, 3433 (1987)

    Article  ADS  Google Scholar 

  53. Intonti, F., Emiliani, V., Lienau, C., Elsaesser, T., Savona, V., Runge, E., Zimmermann, R.R., Nŏtzel, Ploog, K.H.: Quantum mechanical repulsion of exciton levels in a disordered quantum well. Phys. Rev. Lett. 87, 076801 (2001)

    Article  ADS  Google Scholar 

  54. Unold, T., Mueller, K., Lienau, C., Elsaesser, T., Wieck, A.D.: Optical control of excitons in a pair of quantum dots coupled by the dipole-dipole interaction. Phys. Rev. Lett. 94, 137404 (2005)

    Article  ADS  Google Scholar 

  55. Igor, J.: Emission spectra of a two-level atom under the presence of another two-level atom. J. Mod. Opt. 39, 835 (1992)

    Article  Google Scholar 

  56. Vidal, G., Werner, R.F.: A computable measure of entanglement. Phys. Rev. A65, 032314 (2002)

    Article  ADS  Google Scholar 

  57. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  58. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  59. Mohamed, A.-B.A.: Non-local correlations via Wigner–Yanase skew information in two SC-qubit having mutual interaction under phase decoherence. Eur. Phys. J. D71, 261 (2017)

    ADS  Google Scholar 

  60. Mohamed, A.-B.A., Hessian, H.A., Obada, A.-S.F.: Entanglement sudden death of a SC-qubit strongly coupled with a quantized mode of a lossy cavity. Physica A390, 519 (2011)

    Article  ADS  Google Scholar 

  61. Li, S.-B., Xu, J.-B.: Entanglement, Bell violation, and phase decoherence of two atoms inside an optical cavity. Phys. Rev. A72, 22332 (2005)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their subjective comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-B. A. Mohamed.

Appendix

Appendix

By using the Eqs. (6) and (7), the final density matrix of the Eq. (2) is given by

$$\begin{aligned} \hat{\rho } (t)= & {} \mathrm{e}^{\hat{L}t}\hat{\rho }(0)=\sum _{m,n=0}\sum ^{3}_{i,j=0} \beta _{m}\beta _{n} \tilde{\alpha }_{ij}|\Psi ^{m}_{i}\rangle \langle \Psi ^{n}_{j}|. \end{aligned}$$

Where \(\tilde{\alpha }_{mn}=\alpha _{mn}l^{mn}_{ij}\). \(\alpha _{11}=2a^{m}_{1}a^{n}_{1}\), \(\alpha _{12}=\alpha _{13}=a^{m}_{1} a^{n}_{2}\sqrt{2}\), \(\alpha _{21}=\alpha _{31}=a^{m}_{2} a^{n}_{1}\sqrt{2}\) and \(\alpha _{22}= \alpha _{23}= \alpha _{32}= \alpha _{33}=a^{m}_{2} a^{n}_{2}\). By using the canonical transform of Eq. (5), the analytical solution of Eq. (2) is given by Eq. (8). Here, we find the coefficients \(h^{mn}_{ij}\) by collecting the coefficients of each one of the basic states of the two qubits and field, \(\{ |i\rangle (i=1-4)\}\). They are given by

$$\begin{aligned} h^{mn}_{11}= & {} 2a^{m}_{1}a^{n}_{1}\tilde{\alpha }_{11} +a^{m}_{1}a^{n}_{2}\sqrt{2}(\tilde{\alpha }_{12}+\tilde{\alpha }_{13}) +a^{m}_{2}a^{n}_{1}\sqrt{2}(\tilde{\alpha }_{21}+\tilde{\alpha }_{31}) \\&+\,a^{m}_{2}a^{n}_{2}(\tilde{\alpha }_{22}+\tilde{\alpha }_{23}+\tilde{\alpha }_{32}+\tilde{\alpha }_{33}), \\ h^{mn}_{12}= & {} h^{mn}_{13}=\frac{1}{\sqrt{2}}a^{m}_{1}(-\tilde{\alpha }_{12}+\tilde{\alpha }_{13}) +\frac{1}{2}a^{m}_{2}(-\tilde{\alpha }_{22}+\tilde{\alpha }_{23}-\tilde{\alpha }_{32}+\tilde{\alpha }_{33}), \\ h^{mn}_{14}= & {} -2a^{m}_{1}a^{n}_{2}\tilde{\alpha }_{11} +a^{m}_{1}a^{n}_{1}\sqrt{2}(\tilde{\alpha }_{12}+\tilde{\alpha }_{13}) -a^{m}_{2}a^{n}_{2}\sqrt{2}(\tilde{\alpha }_{21}+\tilde{\alpha }_{31}) \\&+\,a^{m}_{2}a^{n}_{1}(\tilde{\alpha }_{22}+\tilde{\alpha }_{23}+\tilde{\alpha }_{32}+\tilde{\alpha }_{33}), \\ h^{mn}_{21}= & {} h^{mn}_{31}=\frac{1}{\sqrt{2}}a^{n}_{1}(-\tilde{\alpha }_{21}+\tilde{\alpha }_{31}) +\frac{1}{2} a^{n}_{2}(-\tilde{\alpha }_{22}-\tilde{\alpha }_{23}+\tilde{\alpha }_{32}+\tilde{\alpha }_{33}), \\ h^{mn}_{22}= & {} h^{mn}_{23}=h^{mn}_{32}=h^{mn}_{33}=\frac{1}{4}(\tilde{\alpha }_{22}-\tilde{\alpha }_{23} -\tilde{\alpha }_{32}+\tilde{\alpha }_{33}), \\ h^{mn}_{24}= & {} h^{mn}_{34}=\frac{1}{\sqrt{2}}a^{n}_{2}(\tilde{\alpha }_{21}-\tilde{\alpha }_{31}) +\frac{1}{2}a^{n}_{1}(-\tilde{\alpha }_{22}-\tilde{\alpha }_{23} +\tilde{\alpha }_{32}+\tilde{\alpha }_{33}), \\ h^{mn}_{41}= & {} -2a^{m}_{2}a^{n}_{1}\tilde{\alpha }_{11} -a^{m}_{2}a^{n}_{2}\sqrt{2}(\tilde{\alpha }_{12}+\tilde{\alpha }_{13}) +a^{m}_{1}a^{n}_{1}\sqrt{2}(\tilde{\alpha }_{21}+\tilde{\alpha }_{31}) \\&+\,a^{m}_{1}a^{n}_{2}(\tilde{\alpha }_{22}+\tilde{\alpha }_{23}+\tilde{\alpha }_{32}+\tilde{\alpha }_{33}), \\ h^{mn}_{42}= & {} h^{mn}_{43}=\frac{1}{\sqrt{2}}a^{m}_{2}(\tilde{\alpha }_{12}-\tilde{\alpha }_{13}) +\frac{1}{2}a^{m}_{1}(-\tilde{\alpha }_{22}+\tilde{\alpha }_{23}-\tilde{\alpha }_{32}+\tilde{\alpha }_{33}), \\ h^{mn}_{44}= & {} 2a^{m}_{2}a^{n}_{2}\tilde{\alpha }_{11} -a^{m}_{2}a^{n}_{1}\sqrt{2}(\tilde{\alpha }_{12}+\tilde{\alpha }_{13}) -a^{m}_{1}a^{n}_{2}\sqrt{2}(\tilde{\alpha }_{21}+\tilde{\alpha }_{31}) \\&+\,a^{m}_{1}a^{n}_{1}(\tilde{\alpha }_{22}+\tilde{\alpha }_{23}+\tilde{\alpha }_{32}+\tilde{\alpha }_{33}). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, AB.A., Obada, AS.F. Non-classical correlations in two quantum dots coupled in a coherent resonator field under decoherence. Quantum Inf Process 17, 277 (2018). https://doi.org/10.1007/s11128-018-2052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2052-1

Keywords

Navigation