Abstract
An analytical description is obtained for two excitons; each exciton is in one of two distant quantum dots embedded in a nano-mechanical resonator which is initially prepared in a superposition of coherent states with intrinsic decoherence. We use a particular method based on the dressed states of the model Hamiltonian. The robustness of the generated non-classical correlations is investigated via the measurement-induced non-locality and geometric quantum discord, compared with the log-negativity. The three measures present generated different correlations that depend on the initial coherence states and their intensities, and intrinsic decoherence. It is witnessed that the phenomena of sudden appearance and disappearance of entanglement are occurring and repeated at chosen intervals of time; they can disappear due to the intrinsic decoherence. The correlations were observed to attain highest robustness under initial coherent state, with decoherence parameter. Quantum correlation functions survive in the stationary states, and the amount of stationary correlations could be controlled by adjusting the values of the intrinsic decoherence, the initial state of the nano-mechanical resonator and its coherence intensity.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Treutlein, P., Genes, C., Hammerer, K., Poggio, M., Rabl, P.: Hybrid Mechanical Systems. Springer, Berlin (2014)
Heiss, M., Fontana, Y., Gustafsson, A., Wüst, G., Magen, C., Oregan, D.D., Luo, J.W., Ketterer, B., Conesa-Boj, S., Kuhlmann, A., Houel, J., Russo-Averchi, E., Morante, J.R., Cantoni, M., Marzari, N., Arbiol, J., Zunger, A., Warburton, R.J., Fontcuberta-Morral, A.: Self-assembled quantum dots in a nanowire system for quantum photonics. Nat. Mater. 12, 439444 (2013)
Yeo, I., De-Assis, P.-L., Gloppe, A., Dupont-Ferrier, E., Verlot, P., Malik, N.S., Dupuy, E., Claudon, J., Gérard, J.-M., Auffèves, A., Nogues, G., Seidelin, S., Poizat, J.-P., Arcizet, O., Richard, M.: Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system. Nat. Nanotechnol. 9, 106 (2014)
Kremer, P.E., Dada, A.C., Kumar, P., Ma, Y., Kumar, S., Clarke, E., Gerardot, B.D.: Strain-tunable quantum dot embedded in a nanowire antenna. Phys. Rev. B90, 201408 (2014)
Wilson-Rae, I., Zoller, P., Imamoǧlu, A.: Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys. Rev. Lett. 92, 075507 (2004)
Deng, G.-W., Wei, D., Li, S.-X., Johansson, J.R., Kong, W.-C., Li, H.-O., Cao, G., Xiao, M., Guo, G.-C., Nori, F., Jiang, H.-W., Guo, G.-P.: Coupling two distant double quantum dots with a microwave resonator. Nano Lett. 15, 6620 (2015)
Tavis, M., Cummings, F.W.: Exact solution for an N-molecule-radiation-field Hamiltonian. Phys. Rev. 170, 379 (1968)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Liu, H., Suh, S.J.: Entanglement growth during thermalization in holographic systems. Phys. Rev. D89, 066012 (2014)
Cotler, J.S., Hertzberg, M.P., Mezei, M., Mueller, M.T.: Entanglement growth after a global quench in free scalar field theory. JHEP 2016, 166 (2016)
Alba, V., Calabrese, P.: Entanglement and thermodynamics after a quantum quench in integrable systems. Proc. Natl. Acad. Sci. 114, 7947 (2017)
Islam, R., Ma, R., Preiss, P.M., Tai, M.E., Lukin, A.: Measuring entanglement entropy in a quantum many-body system. Nature 528, 77 (2015)
Kaufman, A.M., Tai, M.E., Lukin, A., Rispoli, M., Schittko, R., Preiss, P.M., Greiner, M.: Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794 (2016)
Kargarian, M., Jafari, R., Langari, A.: Renormalization of concurrence: the application of the quantum renormalization group to quantum-information systems. Phys. Rev. A76, 060304 (2007)
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)
Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A77, 022301 (2008)
Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for non-zero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)
Datta, A.: Quantum discord between relatively accelerated observers. Phys. Rev. A80, 052304 (2009)
Li, J.-Q., Liang, J.-Q.: Quantum and classical correlations in a classical dephasing environment. Phys. Lett. A 375, 1496 (2011)
Mohamed, A.-B.A.: Pairwise quantum correlations of a three-qubit XY chain with phase decoherence. Quantum Inf. Process. 12, 1141 (2013)
Ramzan, M.: Quantum Inf. Process. 13, 259 (2014)
Mohamed, A.-B.A., Joshi, A., Hassan, S.S.: Bipartite non-local correlations in a double quantum dot excitonic system. J. Phys. A Math. Theor. 47, 335301 (2014)
Tian, Z., Jing, J.: Measurement-induced-nonlocality via the Unruh effect. Ann. Phys. 333, 76 (2013)
Mohamed, A.-B.A.: Quantum correlation of correlated two qubits interacting with a thermal field. Phys. Scr. 85, 055013 (2012)
Zhanga, G.-F., Ji, A.-L., Fan, H., Liu, W.-M.: Quantum correlation dynamics of two qubits in noisy environments: the factorization law and beyond. Ann. Phys. 327, 2074 (2012)
Mohamed, A.-B.A., Metwally, N.: Non-classical correlations based on skew information for an entangled two qubit-system with non-mutual interaction under intrinsic decoherence. Ann. Phys. 381, 137 (2017)
Mohamed, A.-B.A.: Thermal effect on the generated quantum correlation between two superconducting qubits. Laser Phys. Lett. 13, 085202 (2016)
Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A86, 024302 (2012)
Paula, F.M., Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A87, 064101 (2013)
Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)
Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A44, 5401 (1991)
Gardiner, C.W.: Quantum Noise. Springer, Berlin (1991)
Chen, G., Bonadeo, N.H., Steel, D.G., Gammon, D., Katzer, D.S., Park, D., Sham, L.J.: Science 289, 1906 (2000)
Li, G.-X., Yang, Y.-P., Allaart, K., Lenstra, D.: Entanglement for excitons in two quantum dots in a cavity injected with squeezed vacuum. Phys. Rev. A 69, 014301 (2004)
He, Y., Jiang, M.: Entanglement of two optically driven quantum dots mediated by phonons in nano-mechanical resonator. Opt. Commun. 382, 580 (2017)
Zhang, F., Zhao, D., Gu, Y., Chen, H., Hu, X., Gong, Q.: Detuning-determined qubit-qubit entanglement mediated by plasmons: an effective model for dissipative systems. Q. J. Appl. Phys. 121, 203105 (2017)
Behzadi, N., Ahansaz, B., Shojaei, S.: Genuine entanglement among coherent excitonic states of three quantum dots located individually in separated coupled QED cavities. Eur. Phys. J. D67, 5 (2013)
Delbecq, M., Bruhat, L., Viennot, J., Datta, S., Cottet, A., Kontos, T.: Photon-mediated interaction between distant quantum dot circuits. Nat. Commun. 4, 1400 (2013)
Chen, G.-Y., Lambert, N., Chou, C.-H., Chen, Y.-N., Nori, F.: Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement. Phys. Rev. B84, 045310 (2011)
Gonzalez-Tudela, A., Martin-Cano, D., Moreno, E., Martin-Moreno, L., Tejedor, C., Garcia-Vidal, F.J.: Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett. 106, 020501 (2011)
Lim, J., Tame, M., Yee, K.H., Lee, J.-S., Lee, J.: Phonon-induced dynamic resonance energy transfer. New J. Phys. 16, 053018 (2014)
Guo, J.-L., Song, H.-S.: Entanglement between two Tavis–Cummings atoms with phase decoherence. J. Mod. Opt. 56, 496 (2009)
Zheng, L., Zhang, G.-F.: Intrinsic decoherence in Jaynes–Cummings model with Heisenberg exchange interaction. Eur. Phys. J. D71, 288 (2017)
He, Q.-L., Xu, J.-B.: Enhancement of stationary state quantum discord in Tavis–Cummings model by nonlinear Kerr-like medium. Opt. Commun. 284, 3649 (2011)
Fan, K.-M., Zhang, G.-F.: Geometric quantum discord and entanglement between two atoms in Tavis–Cummings model with dipole-dipole interaction under intrinsic decoherence. Eur. Phys. J. D68, 163 (2014)
Mohamed, A.-B.A.: Geometric measure of nonlocality and quantum discord of two charge qubits with phase decoherence and dipole-dipole interaction. Rep. Math. Phys. 72, 121 (2013)
Obada, A.-S.F., Mohamed, A.-B.A.: Quantum correlations of two non-interacting ion’s internal electronic states with intrinsic decoherence. Opt. Commun. 309, 236 (2013)
Obada, A.-S.F., Abdel-Hafez, A.M., Hessian, H.A.: Influence of intrinsic decoherence on nonclassical effects in the nondegenerate bimodal multiquanta Jaynes–Cummings model. J. Phys. B31, 5085 (1998)
Anwar, S.J., Ramzan, M., Khan, M.K.: Dynamics of entanglement and quantum Fisher information for N-level atomic system under intrinsic decoherence. Quantum Inf. Process. 16, 142 (2017)
Puri, R.R., Agarwal, G.S.: Finite-Q cavity electrodynamics: dynamical and statistical aspects. Phys. Rev. A35, 3433 (1987)
Intonti, F., Emiliani, V., Lienau, C., Elsaesser, T., Savona, V., Runge, E., Zimmermann, R.R., Nŏtzel, Ploog, K.H.: Quantum mechanical repulsion of exciton levels in a disordered quantum well. Phys. Rev. Lett. 87, 076801 (2001)
Unold, T., Mueller, K., Lienau, C., Elsaesser, T., Wieck, A.D.: Optical control of excitons in a pair of quantum dots coupled by the dipole-dipole interaction. Phys. Rev. Lett. 94, 137404 (2005)
Igor, J.: Emission spectra of a two-level atom under the presence of another two-level atom. J. Mod. Opt. 39, 835 (1992)
Vidal, G., Werner, R.F.: A computable measure of entanglement. Phys. Rev. A65, 032314 (2002)
Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)
Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)
Mohamed, A.-B.A.: Non-local correlations via Wigner–Yanase skew information in two SC-qubit having mutual interaction under phase decoherence. Eur. Phys. J. D71, 261 (2017)
Mohamed, A.-B.A., Hessian, H.A., Obada, A.-S.F.: Entanglement sudden death of a SC-qubit strongly coupled with a quantized mode of a lossy cavity. Physica A390, 519 (2011)
Li, S.-B., Xu, J.-B.: Entanglement, Bell violation, and phase decoherence of two atoms inside an optical cavity. Phys. Rev. A72, 22332 (2005)
Acknowledgements
The authors would like to thank the reviewers for their subjective comments that helped to improve the manuscript.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
By using the Eqs. (6) and (7), the final density matrix of the Eq. (2) is given by
Where \(\tilde{\alpha }_{mn}=\alpha _{mn}l^{mn}_{ij}\). \(\alpha _{11}=2a^{m}_{1}a^{n}_{1}\), \(\alpha _{12}=\alpha _{13}=a^{m}_{1} a^{n}_{2}\sqrt{2}\), \(\alpha _{21}=\alpha _{31}=a^{m}_{2} a^{n}_{1}\sqrt{2}\) and \(\alpha _{22}= \alpha _{23}= \alpha _{32}= \alpha _{33}=a^{m}_{2} a^{n}_{2}\). By using the canonical transform of Eq. (5), the analytical solution of Eq. (2) is given by Eq. (8). Here, we find the coefficients \(h^{mn}_{ij}\) by collecting the coefficients of each one of the basic states of the two qubits and field, \(\{ |i\rangle (i=1-4)\}\). They are given by
Rights and permissions
About this article
Cite this article
Mohamed, AB.A., Obada, AS.F. Non-classical correlations in two quantum dots coupled in a coherent resonator field under decoherence. Quantum Inf Process 17, 277 (2018). https://doi.org/10.1007/s11128-018-2052-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2052-1