Abstract
We propose schemes to entangle two quantum dots (QDs) with the aid of Majorana fermions via optimal control. Two paradigmatic cases, the teleportation and the intradot spin flip processes, are considered, respectively, in the charge and spin degrees of QDs. We demonstrate that optimal control techniques can be effectively used to prepare entanglement between two QDs through manipulating their chemical potentials. Significantly, our optimal control generation of entangled states has a prominent advantage: The runtime is much shorter than in adiabatic passage, providing a shortcut to adiabatic entanglement preparation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
References
Kitaev, A.Y.: Unpaired majorana fermions in quantum wires. Phys. Uspekhi 44, 131 (2001). http://stacks.iop.org/1063-7869/44/i=10S/a=S29
Read, N., Green, D.: Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum hall effect. Phys. Rev. B 61, 10267–10297 (2000). https://doi.org/10.1103/PhysRevB.61.10267
Ivanov, D.A.: Non-Abelian statistics of half-quantum vortices in \(\mathit{p}\)-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001). https://doi.org/10.1103/PhysRevLett.86.268
Fu, L., Kane, C.L.: Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008). https://doi.org/10.1103/PhysRevLett.100.096407
Sau, J.D., Lutchyn, R.M., Tewari, S., Das Sarma, S.: Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104, 040502 (2010). https://doi.org/10.1103/PhysRevLett.104.040502
Lutchyn, R.M., Sau, J.D., Das Sarma, S.: Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010). https://doi.org/10.1103/PhysRevLett.105.077001
Oreg, Y., Refael, G., von Oppen, F.: Helical liquids and majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010). https://doi.org/10.1103/PhysRevLett.105.177002
Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011). https://doi.org/10.1103/RevModPhys.83.1057
Alicea, J.: New directions in the pursuit of majorana fermions in solid state systems. Rep. Progr. Phys. 75, 076501 (2012). http://stacks.iop.org/0034-4885/75/i=7/a=076501
Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003). https://doi.org/10.1016/S0003-4916(02)00018-0
Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008). https://doi.org/10.1103/RevModPhys.80.1083
Jiang, L., Kane, C.L., Preskill, J.: Interface between topological and superconducting qubits. Phys. Rev. Lett. 106, 130504 (2011). https://doi.org/10.1103/PhysRevLett.106.130504
Bonderson, P., Lutchyn, R.M.: Topological quantum buses: coherent quantum information transfer between topological and conventional qubits. Phys. Rev. Lett. 106, 130505 (2011). https://doi.org/10.1103/PhysRevLett.106.130505
Hassler, F., Akhmerov, A.R., Hou, C.-Y., Beenakker, C.W.J.: Anyonic interferometry without anyons: how a flux qubit can read out a topological qubit. New J. Phys. 12(12), 125002 (2010). http://stacks.iop.org/1367-2630/12/i=12/a=125002
Sau, J.D., Tewari, S., Das Sarma, S.: Universal quantum computation in a semiconductor quantum wire network. Phys. Rev. A 82, 052322 (2010). https://doi.org/10.1103/PhysRevA.82.052322
Leijnse, M., Flensberg, K.: Hybrid topological-spin qubit systems for two-qubit-spin gates. Phys. Rev. B 86, 104511 (2012). https://doi.org/10.1103/PhysRevB.86.104511
Hyart, T., van Heck, B., Fulga, I.C., Burrello, M., Akhmerov, A.R., Beenakker, C.W.J.: Flux-controlled quantum computation with majorana fermions. Phys. Rev. B 88, 035121 (2013). https://doi.org/10.1103/PhysRevB.88.035121
Kovalev, A.A., De, A., Shtengel, K.: Spin transfer of quantum information between majorana modes and a resonator. Phys. Rev. Lett. 112, 106402 (2014). https://doi.org/10.1103/PhysRevLett.112.106402
Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998). https://doi.org/10.1103/PhysRevA.57.120
Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005). https://doi.org/10.1126/science.1116955. http://science.sciencemag.org/content/309/5744/2180
Koppens, F.H.L., Folk, J.A., Elzerman, J.M., Hanson, R., van Beveren, L.H.W., Vink, I.T., Tranitz, H.P., Wegscheider, W., Kouwenhoven, L.P., Vandersypen, L.M.K.: Control and detection of singlet-triplet mixing in a random nuclear field. Science 309, 1346–1350 (2005). https://doi.org/10.1126/science.1113719. http://science.sciencemag.org/content/309/5739/1346
Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T., Glaser, S.: Optimal control of coupled spin dynamics: design of nmr pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005). https://doi.org/10.1016/j.jmr.2004.11.004. http://www.sciencedirect.com/science/article/pii/S1090780704003696
Shi, Z.C., Wang, W., Yi, X.X.: Entangled states of two quantum dots mediated by Majorana fermions. New J. Phys. 18(2), 023005 (2016). http://stacks.iop.org/1367-2630/18/i=2/a=023005
Machnes, S., Sander, U., Glaser, S.J., de Fouquières, P., Gruslys, A., Schirmer, S., Schulte-Herbrüggen, T.: Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework. Phys. Rev. A 84, 022305 (2011). https://doi.org/10.1103/PhysRevA.84.022305
Fu, L.: Electron teleportation via majorana bound states in a mesoscopic superconductor. Phys. Rev. Lett. 104, 056402 (2010). https://doi.org/10.1103/PhysRevLett.104.056402
Zazunov, A., Yeyati, A.L., Egger, R.: Coulomb blockade of majorana-fermion-induced transport. Phys. Rev. B 84, 165440 (2011). https://doi.org/10.1103/PhysRevB.84.165440
Hützen, R., Zazunov, A., Braunecker, B., Yeyati, A.L., Egger, R.: Majorana single-charge transistor. Phys. Rev. Lett. 109, 166403 (2012). https://doi.org/10.1103/PhysRevLett.109.166403
Plugge, S., Zazunov, A., Sodano, P., Egger, R.: Majorana entanglement bridge. Phys. Rev. B 91, 214507 (2015). https://doi.org/10.1103/PhysRevB.91.214507
Flensberg, K.: Non-Abelian operations on majorana fermions via single-charge control. Phys. Rev. Lett. 106, 090503 (2011). https://doi.org/10.1103/PhysRevLett.106.090503
Wang, Z., Hu, X.-Y., Liang, Q.-F., Hu, X.: Detecting majorana fermions by nonlocal entanglement between quantum dots. Phys. Rev. B 87, 214513 (2013). https://doi.org/10.1103/PhysRevB.87.214513
Walter, S., Budich, J.C.: Teleportation-induced entanglement of two nanomechanical oscillators coupled to a topological superconductor. Phys. Rev. B 89, 155431 (2014). https://doi.org/10.1103/PhysRevB.89.155431
Nazarov, Y.V., Blanter, Y.M.: Quantum Transport: Introduction to Nanoscience. Cambridge University Press, Cambridge (2009)
Arenz, C., Gualdi, G., Burgarth, D.: Control of open quantum systems: case study of the central spin model. New J. Phys. 16(6), 065023 (2014). http://stacks.iop.org/1367-2630/16/i=6/a=065023
Tewari, S., Zhang, C., Das Sarma, S., Nayak, C., Lee, D.-H.: Testable signatures of quantum nonlocality in a two-dimensional chiral \(p\)-wave superconductor. Phys. Rev. Lett. 100, 027001 (2008). https://doi.org/10.1103/PhysRevLett.100.027001
Leijnse, M., Flensberg, K.: Quantum information transfer between topological and spin qubit systems. Phys. Rev. Lett. 107, 210502 (2011). https://doi.org/10.1103/PhysRevLett.107.210502
Ke, S.-S., Lü, H.-F., Yang, H.-J., Guo, Y., Zhang, H.-W.: Nonlocal entanglement and noise between spin qubits induced by Majorana bound states. Phys. Lett. A 379, 170–174 (2015). https://doi.org/10.1016/j.physleta.2014.08.015. http://www.sciencedirect.com/science/article/pii/S0375960114008287
Khaetskii, A.V., Nazarov, Y.V.: Spin relaxation in semiconductor quantum dots. Phys. Rev. B 61, 12639–12642 (2000). https://doi.org/10.1103/PhysRevB.61.12639
Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P.: Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012). https://doi.org/10.1126/science.1222360. http://science.sciencemag.org/content/336/6084/1003
Rokhinson, L.P., Liu, X., Furdyna, J.K.: The fractional ac josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles. Nat. Phys. 8, 795–799 (2012). https://doi.org/10.1038/nphys2429. http://www.nature.com/nphys/journal/v8/n11/abs/nphys2429.html#supplementary-information
van Woerkom, D.J., Geresdi, A., Kouwenhoven, L.P.: One minute parity lifetime of a nbtin cooper-pair transistor. Nat. Phys. 11, 547–550 (2015). https://doi.org/10.1038/nphys3342. http://www.nature.com/nphys/journal/v11/n7/abs/nphys3342.html#supplementary-information
Higginbotham, A., Albrecht, S., Kiršanskas, G., Chang, W., Kuemmeth, F., Krogstrup, P., Jespersen, T., Nygård, J., Flensberg, K., Marcus, C.: Parity lifetime of bound states in a proximitized semiconductor nanowire. Nat. Phys. 11, 1017–1021 (2015). https://doi.org/10.1038/nphys3461. http://www.nature.com/nphys/journal/v11/n12/abs/nphys3461.html#supplementary-information
Das, A., Ronen, Y., Most, Y., Oreg, Y., Heiblum, M., Shtrikman, H.: Zero-bias peaks and splitting in an al-inas nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012). https://doi.org/10.1038/nphys2479. http://www.nature.com/nphys/journal/v8/n12/abs/nphys2479.html#supplementary-information
Deng, M.T., Yu, C.L., Huang, G.Y., Larsson, M., Caroff, P., Xu, H.Q.: Anomalous zero-bias conductance peak in a nb-insb nanowire-nb hybrid device. Nano Lett. 12, 6414–6419 (2012). https://doi.org/10.1021/nl303758w
Finck, A.D.K., Van Harlingen, D.J., Mohseni, P.K., Jung, K., Li, X.: Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device. Phys. Rev. Lett. 110, 126406 (2013). https://doi.org/10.1103/PhysRevLett.110.126406
Fasth, C., Fuhrer, A., Samuelson, L., Golovach, V.N., Loss, D.: Direct measurement of the spin-orbit interaction in a two-electron inas nanowire quantum dot. Phys. Rev. Lett. 98, 266801 (2007). https://doi.org/10.1103/PhysRevLett.98.266801
Nilsson, H., Caroff, P., Thelander, C., Larsson, M., Wagner, J., Wernersson, L.-E., Samuelson, L., Xu, H.: Giant, level-dependent g factors in insb nanowire quantum dots. Nano Lett. 9, 3151–3156 (2009). https://doi.org/10.1021/nl901333a
Dolde, F., Bergholm, V., Wang, Y., Jakobi, I., Naydenov, B., Pezzagna, S., Meijer, J., Jelezko, F., Neumann, P., Schulte-Herbrüggen, T.: High-fidelity spin entanglement using optimal control. Nat. Commun. 5, 4371 (2014). https://doi.org/10.1038/ncomms4371
Waldherr, G., Wang, Y., Zaiser, S., Jamali, M., Schulte-Herbrüggen, T., Abe, H., Ohshima, T., Isoya, J., Du, J., Neumann, P., et al.: Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014). https://doi.org/10.1038/nature12919
Nadj-Perge, S., Frolov, S., Bakkers, E., Kouwenhoven, L.P.: Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010). https://doi.org/10.1038/nature09682. http://www.nature.com/nature/journal/v468/n7327/abs/nature09682.html#supplementary-information
Petta, J.R., Johnson, A.C., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Manipulation of a single charge in a double quantum dot. Phys. Rev. Lett. 93, 186802 (2004). https://doi.org/10.1103/PhysRevLett.93.186802
Petersson, K.D., Petta, J.R., Lu, H., Gossard, A.C.: Quantum coherence in a one-electron semiconductor charge qubit. Phys. Rev. Lett. 105, 246804 (2010). https://doi.org/10.1103/PhysRevLett.105.246804
Acknowledgements
This work was supported by the Doctoral Startup Fund of East China University of Technology and the National Natural Science Foundation of China (Grants Nos. 11375025, 11274043). We acknowledge the DYNAMO code [24].
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, XP., Shao, B. & Zou, J. Entanglement generation of two quantum dots with Majorana fermions via optimal control. Quantum Inf Process 17, 272 (2018). https://doi.org/10.1007/s11128-018-2039-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2039-y