Abstract
We study how to improve the precision of the quantum estimation of phase for an uniformly accelerated atom in fluctuating electromagnetic field by reflecting boundaries. We find that the precision decreases with increases of the acceleration without the boundary. With the presence of a reflecting boundary, the precision depends on the atomic polarization, position and acceleration, which can be effectively enhanced compared to the case without boundary if we choose the appropriate conditions. In particular, with the presence of two parallel reflecting boundaries, we obtain the optimal precision for atomic parallel polarization and the special distance between two boundaries, as if the atom were shielded from the fluctuation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96(1), 010401 (2006)
Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011)
Roy, S.M., Braunstein, S.L.: Exponentially enhanced quantum metrology. Phys. Rev. Lett. 100(22), 220501 (2008)
Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54(6), R4649 (1996)
Bužek, V., Derka, R., Massar, S.: Optimal quantum clocks. Phys. Rev. Lett. 82(10), 2207 (1999)
Peters, A., Chung, K.Y., Chu, S.: Measurement of gravitational acceleration by dropping atoms. Nature (London) 400, 849–852 (1999)
Jozsa, R., Abrams, D.S., Dowling, J.P., Williams, C.P.: Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett. 85(9), 2010 (2000)
Tian, Z.H., Wang, J.C., Fan, H., Jing, J.L.: Relativistic quantum metrology in open system dynamics. Sci. Rep. 5, 7946 (2015)
Wang, J.C., Tian, Z.H., Jing, J.L.: Quantum metrology and estimation of Unruh effect. Sci. Rep. 4, 7195 (2014)
Yurke, B., McCall, S.L., Klauder, J.R.: SU (2) and SU (1, 1) interferometers. Phys. Rev. A 33(6), 4033 (1986)
Dowling, J.P.: Correlated input-port, matter-wave interferometer: quantum-noise limits to the atom-laser gyroscope. Phys. Rev. A 57(6), 4736 (1998)
Kok, P., Braunstein, S.L., Dowling, J.P.: Quantum lithography, entanglement and Heisenberg-limited parameter estimation. J. Opt. B 6(8), S811 (2004)
Lucien, J.B.: Measurement of gravity at sea and in the air. Rev. Geophys. 5(4), 477–526 (1967)
Poli, N., Wang, F.Y., Tarallo, M.G., Alberti, A., Prevedelli, M., Tinox, G.M.: Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Phys. Rev. Lett. 106(3), 038501 (2011)
Wang, J.C., Tian, Z.H., Jing, J.L., Fan, H.: Influence of relativistic effects on satellite-based clock synchronization. Phys. Rev. D 93(6), 065008 (2016)
Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)
Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. Edizioni della Normale, Pisa (1982)
Hübner, M.: Explicit computation of the Bures distance for density matrices. Phys. Lett. A 163(4), 239–242 (1992)
Hübner, M.: Computation of Uhlmann’s parallel transport for density matrices and the Bures metric on three-dimensional Hilbert space. Phys. Lett. A 179(4–5), 226–230 (1993)
Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72(22), 3439 (1994)
Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14(4), 870 (1976)
Birrel, N.D., Davis, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)
Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: The Unruh effect and its applications. Rev. Mod. Phys. 80(3), 787 (2008)
Tian, Z.H., Jing, J.L.: Measurement-induced-nonlocality via the Unruh effect. Ann. Phys. 333, 76–89 (2013)
Jia, L.J., Tian, Z.H., Jing, J.L.: Entropic uncertainty relation in de Sitter space. Ann. Phys. 353, 37–47 (2015)
Jin, Y., Yu, H.: Electromagnetic shielding in quantum metrology. Phy. Rev. A 91(2), 022120 (2015)
Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Inhibiting decoherence of two-level atom in thermal bath by presence of boundaries. Quantum Inf. Process. 15(9), 3677–3694 (2016)
Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102–112 (2016)
Wang, J.C., Jing, J.L.: Quantum decoherence in noninertial frames. Phys. Rev. A 82(3), 032324 (2010)
Tian, Z.H., Jing, J.L.: How the Unruh effect affects transition between classical and quantum decoherences. Phys. Lett. B 707(2), 264–271 (2012)
Wang, J. C., Tian, Z. H., Jing, J. L., Fan, H.: Irreversible degradation of quantum coherence under relativistic motion. arXiv: 1601.03238
Rosenkranz, M., Jaksch, D.: Parameter estimation with cluster states. Phys. Rev. A 79(2), 022103 (2009)
Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79(20), 3865 (1997)
Ulam-Orgikh, D., Kitagawa, M.: Spin squeezing and decoherence limit in Ramsey spectroscopy. Phys. Rev. A 64(5), 052106 (2001)
Knysh, S., Smelyanskiy, V.N., Durkin, G.A.: Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state. Phys. Rev. A 83(2), 021804 (2011)
Kołodynński, J., Demkowicz-Dobrzanski, R.: Phase estimation without a priori phase knowledge in the presence of loss. Phys. Rev. A 82(5), 053804 (2010)
Tian, Z.H., Wang, J.C., Fan, H., Jing, J.L.: Relativistic quantum metrology in open system dynamics. Sci. Rep. 5, 7946 (2015)
Tian, Z.H., Jing, J.L.: Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime. Ann. Phys. 350, 1–13 (2014)
Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87(2), 022337 (2013)
Compagno, G., Passante, R., Persico, F.: Atom-Field Interactions and Dressed Atoms. Cambridge University Press, Cambridge (1995)
Zanardi, P., Paris, M.G.A., C, L.: Quantum criticality as a resource for quantum estimation. Phys. Rev. A 78(4), 042105 (2008)
Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys 17, 821 (1976)
Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)
Greiner, W., Reinhardt, J.: Field Quantization. Springer, Berlin (1996)
Brown, L.S., Maclay, G.J.: Vacuum stress between conducting plates: an image solution. Phys. Rev. 184(5), 1272 (1969)
Acknowledgements
This work is supported by the National Natural Science Foundation of China under Grant Nos. 11475061 and 11305058. X. Liu was supported by the Hunan Provincial Innovation Foundation For Postgraduate under Grant No. CX2017B175.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, Y., Liu, X., Wang, J. et al. Quantum metrology of phase for accelerated two-level atom coupled with electromagnetic field with and without boundary. Quantum Inf Process 17, 54 (2018). https://doi.org/10.1007/s11128-018-1815-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1815-z