Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Entanglement-assisted quantum MDS codes constructed from negacyclic codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, entanglement-assisted quantum codes have been constructed from cyclic codes by some scholars. However, how to determine the number of shared pairs required to construct entanglement-assisted quantum codes is not an easy work. In this paper, we propose a decomposition of the defining set of negacyclic codes. Based on this method, four families of entanglement-assisted quantum codes constructed in this paper satisfy the entanglement-assisted quantum Singleton bound, where the minimum distance satisfies \(q+1 \le d\le \frac{n+2}{2}\). Furthermore, we construct two families of entanglement-assisted quantum codes with maximal entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52, 2493–2496 (1995)

    Article  ADS  Google Scholar 

  2. Shikhmin, A., Litsyn, S., Tsfasman, M.A.: Asymptotically good quantum codes. Phys. Rev. A 63, 032311 (2001)

    Article  ADS  Google Scholar 

  3. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, H.: Some good quantum error-correcting codes from algebraic-geometric codes. IEEE Trans. Inf. Theory 47, 2059–2061 (2001)

    Article  MATH  Google Scholar 

  5. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary quantum stabiliter codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)

    Article  MATH  Google Scholar 

  6. Qian, J., Zhang, L.: Nonbinary quantum codes derived from group character codes. Int. J. Quantum Inf. 10, 1250042 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Qian, J., Zhang, L.: New optimal subsystem codes. Discrete Math. 313, 2451–2455 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brun, T., Devetak, I., Hsieh, M.-H.: Correcting quantum errors with entanglement. Science 52, 436 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Lu, L., Li, R., Guo, L., Fu, Q.: Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quantum Inf. Process. 14(1), 165–182 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bowen, G.: Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A 66, 052313 (2002)

    Article  ADS  Google Scholar 

  11. Guo, L., Li, R.: Linear plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013)

    Article  ADS  Google Scholar 

  12. Hsieh, M.H., Brun, T.A., Devetak, I.: Entanglement-assisted quantum quasi-cyclic low-density parity-check codes. Phys. Rev. A 79, 032340 (2009)

    Article  ADS  Google Scholar 

  13. Hsieh, M.H., Devetak, I., Brun, T.A.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76, 062313 (2007)

    Article  ADS  Google Scholar 

  14. Hsieh, M.H., Yen, W.T., Hsu, L.Y.: High performance entanglement-assisted quantum LDPC codes need little entanglement. IEEE Trans. Inf. Theory 57, 1761–1769 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lai, C.Y., Brun, T.A.: Entanglement-assisted quantum error-correcting codes with imperfect ebits. Phys. Rev. A 86, 032319 (2012)

    Article  ADS  Google Scholar 

  16. Lai, C.Y., Brun, T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013)

    Article  ADS  Google Scholar 

  17. Shin, J., Heo, J., Brun, T.A.: Entanglement-assisted codeword stabilized quantum codes. Phys. Rev. A 84, 062321 (2011)

    Article  ADS  MATH  Google Scholar 

  18. Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008)

    Article  ADS  Google Scholar 

  19. Li, R., Zuo, F., Liu, Y.: A study of skew asymmetric \(q^2\)-cyclotomic coset and its application. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 12(1), 87–89 (2011). (in Chinese)

    Google Scholar 

  20. Lü, L., Li, R.: Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes. Int. J. Quantum Inf. 12(03), 1450015 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Qian, J., Zhang, L.: Entanglement-assisted quantum codes from arbitrary binary linear codes. Des. Codes Cryptogr. 77(1), 193–202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fan, J., Chen, H., Xu, J.: Constructions of q-ary entanglement-assisted quantum MDS codes with minimum distance greater than q + 1. Quantum Inf. Comput. 16(5 & 6), 0423–0434 (2016)

    MathSciNet  Google Scholar 

  23. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. (2017). https://doi.org/10.1007/s10623-017-0330-z

  24. Lai, C.Y., Ashikhmin, A.: Linear programming bounds for entanglement-assisted quantum error correcting codes by split weight enumerators. IEEE Trans. Inf. Theory. (2017). https://doi.org/10.1109/TIT.2017.2711601

  25. Ashikhmin, A., Litsyn, S.: Upper bounds on the size of quantum codes. IEEE Trans. Inf. Theory 45(4), 206–1215 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  MATH  Google Scholar 

  27. Grassl, M.: Entanglement-assisted quantum communication beating the quantum singleton bound. AQIS, Taiwan (2016)

    Google Scholar 

  28. Kai, X., Zhu, S., Li, P.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kai, X., Zhu, S., Tang, Y.: Quantum negacyclic codes. Phys. Rev. A 88(1), 012326 (2013)

    Article  ADS  Google Scholar 

  30. La Guardia, G.G.: On negacyclic MDS-convolutional codes. Linear Algebra Appl. 448, 85–96 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, J., Li, J., Lin, J.: New optimal asymmetric quantum codes derived from negacyclic codes. Int. J. Theor. Phys. 53(1), 72–79 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chen, J., Li, J., Yang, F., Huang, Y.: Nonbinary quantum convolutional codes derived from negacyclic codes. Int. J. Theor. Phys. 54(1), 198–209 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, J., Li, J., Huang, Y., Lin, J.: Some families of asymmetric quantum codes and quantum convolutional codes from constacyclic codes. Linear Algebra Appl. 475, 186–199 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. La Guardia, G.G.: On optimal constacyclic codes. Linear Algebra Appl. 496, 594–610 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Krishna, A., Sarwate, D.V.: Pseudocyclic maximum-distance-separable codes. IEEE Trans. Inf. Theory 36(4), 880–884 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, T., Ge, G.: Some new classes of quantum MDS codes from constacyclic codes. IEEE Trans. Inf. Theory 61(9), 5224–5228 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

Download references

Acknowledgements

We are indebted to anonymous reviewers who have made constructive suggestions for the improvement of this manuscript. The research was supported by the Natural Science Foundation of Fujian Province, China (Nos. 2016J01281, 2016J01278) and Foundation of Fujian Agriculture and Forestry University (61201406304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Huang, Y., Feng, C. et al. Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf Process 16, 303 (2017). https://doi.org/10.1007/s11128-017-1750-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1750-4

Keywords

Navigation