Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Three-party quantum secure direct communication against collective noise

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on logical quantum states, two three-party quantum secure direct communication protocols are proposed, which can realize the exchange of the secret messages between three parties with the help of the measurement correlation property of six-particle entangled states. These two protocols can be immune to the collective-dephasing noise and the collective-rotation noise, respectively; neither of them has information leakage problem. The one-way transmission mode ensures that they can congenitally resist against the Trojan horse attacks and the teleportation attack. Furthermore, these two protocols are secure against other active attacks because of the use of the decoy state technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. Bangalore, India (1984)

  2. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  3. Wang, L.L., Ma, W.P.: Controlled quantum secure communication protocol with single photons in both polarization and spatial-mode degrees of freedom. Mod. Phys. Lett. B 30, 1650051 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  5. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Xu, G.B., Wen, Q.Y., Qin, S.J., et al.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A 93, 032341 (2016)

    Article  ADS  Google Scholar 

  7. Liu, F., Gao, F., Wen, Q.Y.: Linear monogamy of entanglement in three-qubit systems. Sci. Rep. 5, 16745 (2015)

    Article  ADS  Google Scholar 

  8. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 6–10 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Jin, X.R., Ji, X., Zhang, Y.Q., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354, 67–70 (2006)

    Article  ADS  Google Scholar 

  10. Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23, 1680–1682 (2006)

    Article  ADS  Google Scholar 

  11. Ji, X., Zhang, S.: Secure quantum dialogue based on single-photon. Chin. Phys. 15, 1418–1420 (2006)

    Article  ADS  Google Scholar 

  12. Yin, A.H., Tang, Z.H.: Two-step efficient quantum dialogue with three-particle entangled W state. Int. J. Theor. Phys. 53, 2760–2768 (2014)

    Article  MATH  Google Scholar 

  13. Tan, Y.G., Cai, Q.Y.: Classical correlation in quantum dialogue. Int. J. Quantum Inf. 6, 325–329 (2008)

    Article  Google Scholar 

  14. Gao, F., Qin, S.J., Wen, Q.Y., et al.: Comment on: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 372, 3333–3336 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Luo, Y.P., Lin, C.Y., Hwang, T.: Efficient quantum dialogue using single photons. Quantum Inf. Process. 13, 2451–2461 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ye, T.Y.: Quantum dialogue without information leakage using a single quantum entangled state. Int. J. Theor. Phys. 53, 3719–3727 (2014)

    Article  MATH  Google Scholar 

  17. Zhou, N.R., Wu, G.T., Gong, L.H., et al.: Secure quantum dialogue protocol based on W states without information leakage. Int. J. Theor. Phys. 52, 3204–3211 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shen, D.S., Ma, W.P., Yin, X.R., et al.: Quantum dialogue with authentication based on Bell states. Int. J. Theor. Phys. 52, 1825–1835 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yin, X.R., Ma, W.P., Liu, W.Y., Shen, D.S.: Efficient bidirectional quantum secure communication with two-photon entanglement. Quantum Inf. Process. 12, 3903–3102 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)

    Article  ADS  Google Scholar 

  21. Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12, 2131–2142 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ye, T.Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf. Process. 14, 1469–1486 (2015)

    Article  ADS  MATH  Google Scholar 

  23. Ye, T.Y.: Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Inf. Process. 14, 1487–1499 (2015)

    Article  ADS  MATH  Google Scholar 

  24. Wu, D., Lv, H.J., Xie, G.J.: Robust anti-collective noise quantum secure direct dialogue using logical Bell states. Int. J. Theor. Phys. 55, 457–469 (2016)

    Article  MATH  Google Scholar 

  25. Ye, T.Y.: Fault-tolerant authenticated quantum dialogue using logical Bell states. Quantum Inf. Process. 14, 3499–3514 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Man, Z.X., Xia, Y.J.: Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin. Phys. Lett. 24, 15–18 (2007)

    Article  ADS  Google Scholar 

  27. Wang, M.Y., Yan, F.L.: Three-party simultaneous quantum secure direct communication scheme with EPR pairs. Chin. Phys. Lett. 24, 2486 (2007)

    Article  ADS  Google Scholar 

  28. Chong, S.K., Hwang, T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284, 515–518 (2011)

    Article  ADS  Google Scholar 

  29. Wang, L.Y., Chen, X.B., Xu, G., et al.: Information leakage in three-party simultaneous quantum secure direct communication with EPR pairs. Opt. Commun. 284, 1719–1720 (2011)

    Article  ADS  Google Scholar 

  30. Yin, X.R., Ma, W.P., Shen, D.S., et al.: Efficient three-party quantum secure direct communication with EPR pairs. J. Quantum Inf. Sci. 1, 3 (2013)

    Google Scholar 

  31. Wang, L.L., Ma, W.P., Wang, M.L., Shen, D.S.: Three-party quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55, 2490–2499 (2016)

    Article  MATH  Google Scholar 

  32. Borras, A., Plastino, A., Batle, J., et al.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A Math. Theor. 40, 13407 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  34. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  35. Liu, F., Su, Q., Wen, Q.Y.: Eavesdropping on multiparty quantum secret sharing scheme based on the phase shift operations. Int. J. Theor. Phys. 53, 1730–1737 (2014)

    Article  MATH  Google Scholar 

  36. Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189–3193 (2008)

    Article  ADS  Google Scholar 

  37. Bostroem, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  38. He, Y.F., Ma, W.P.: Two-party quantum key agreement protocol with four-particle entangled states. Mod. Phys. Lett. B 30, 1650332 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  39. He, Y.F., Ma, W.P.: Two-party quantum key agreement based on four-particle GHZ states. Int. J. Quantum Inf. 14, 1650007 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15, 5023–5035 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (Grant No. 2017YFB0802002), the National Natural Science Foundation of China (Grant Nos. 61373171, 61472472), the Basic Research Project of Natural Science of Shaanxi Province (Grant No. 2017JM6037) and the Key Project of Science Research of Anhui Province (Grant No. KJ2017A519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-Feng He.

Appendices

Appendix A: Logical six-particle entangled state \(|\Lambda _\mathrm{dp}\rangle _{ABCDEF}\)

A six-particle entangled state \(|\Lambda \rangle _{ABCDEF}\) (see Eq. 1) will become a logical six-particle entangled state \(|\Lambda _\mathrm{dp}\rangle _{ABCDEF}\) if its particles C, D, E, F are replaced with the corresponding logical qubits \(|0_\mathrm{dp}\rangle \) or \(|1_\mathrm{dp}\rangle \), respectively. That is, the logical six-particle entangled state \(|\Lambda _\mathrm{dp}\rangle _{ABCDEF}\) is as follows:

$$\begin{aligned} |\Lambda _\mathrm{dp}\rangle _{ABCDEF}= & {} \frac{1}{4\sqrt{2}}[(|00\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F} \\&+\,|11\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F} \\&+\,|00\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F} \\&+\,|11\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F} \\&+\,|00\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F} \\&+\,|11\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F} \\&+\,|00\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F} \\&+\,|11\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F} \\&+\,|00\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F} \\&+\,|11\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F} \\&+\,|00\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F} \\&+\,|11\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F} \\&+\,|01\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F} \\ \end{aligned}$$
$$\begin{aligned}&+\,|10\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F} \\&+\,|01\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F} \\&+\,|10\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F} \\&+\,|01\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F} \\&+\,|10\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F} \\&+\,|01\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F} \\&+\,|10\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F}) \\&-\,(|01\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F} \\ \end{aligned}$$
$$\begin{aligned}&+\,|10\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F} \\&+\,|01\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F} \\&+\,|10\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F} \\&+\,|01\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F} \\&+\,|10\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F} \\&+\,|00\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F} \\&+\,|11\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F} \\&+\, |00\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F} \\&+\,|11\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F} \\&+\,|01\rangle _{AB}|1_\mathrm{dp}\rangle _{C}|1_\mathrm{dp}\rangle _{D}|1_\mathrm{dp}\rangle _{E}|0_\mathrm{dp}\rangle _{F} \\&+\,|10\rangle _{AB}|0_\mathrm{dp}\rangle _{C}|0_\mathrm{dp}\rangle _{D}|0_\mathrm{dp}\rangle _{E}|1_\mathrm{dp}\rangle _{F})] \\ \end{aligned}$$
$$\begin{aligned}= & {} \frac{1}{4\sqrt{2}}[(|00\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}} \nonumber \\&+\,|11\rangle _{AB}|10\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}} \nonumber \\&+\,|00\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}} \nonumber \\&+\,|11\rangle _{AB}|10\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}} \nonumber \\&+\,|00\rangle _{AB}|01\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}} \nonumber \\&+\,|11\rangle _{AB}|10\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}} \nonumber \\&+\,|00\rangle _{AB}|01\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}} \nonumber \\&+\,|11\rangle _{AB}|10\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}} \nonumber \\&+\,|00\rangle _{AB}|10\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}} \nonumber \\&+\,|11\rangle _{AB}|01\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}} \nonumber \\&+\,|00\rangle _{AB}|10\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}} \nonumber \\&+\,|11\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}} \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,|01\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}} \nonumber \\&+\,|10\rangle _{AB}|10\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}} \nonumber \\&+\,|01\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}} \nonumber \\&+\,|10\rangle _{AB}|10\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}} \nonumber \\&+\,|01\rangle _{AB}|10\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}} \nonumber \\&+\,|10\rangle _{AB}|01\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}} \nonumber \\&+\,|01\rangle _{AB}|10\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}} \nonumber \\&+\,|10\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}) \nonumber \\&-\,(|01\rangle _{AB}|01\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}} \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,|10\rangle _{AB}|10\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}} \nonumber \\&+\,|01\rangle _{AB}|01\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}} \nonumber \\&+\,|10\rangle _{AB}|10\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}} \nonumber \\&+\,|01\rangle _{AB}|10\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}} \nonumber \\&+\,|10\rangle _{AB}|01\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}} \nonumber \\&+\,|00\rangle _{AB}|10\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}} \nonumber \\&+\,|11\rangle _{AB}|01\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}} \nonumber \\&+\, |00\rangle _{AB}|10\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}} \nonumber \\&+\,|11\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}} \nonumber \\&+\,|01\rangle _{AB}|10\rangle _{C_{1}C_{2}}|10\rangle _{D_{1}D_{2}}|10\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}} \nonumber \\&+\,|10\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|10\rangle _{F_{1}F_{2}})] \end{aligned}$$
(10)

Appendix B: The formula derivation of Eq. (4)

The CNOT operation satisfies \(U^{C_{1}C_{2}}_\mathrm{CNOT}|00\rangle _{C_{1}C_{2}}=|00\rangle _{C_{1}C_{2}}\), \(U^{C_{1}C_{2}}_\mathrm{CNOT}|01\rangle _{C_{1}C_{2}}=|01\rangle _{C_{1}C_{2}}\), \(U^{C_{1}C_{2}}_\mathrm{CNOT}|10\rangle _{C_{1}C_{2}}=|11\rangle _{C_{1}C_{2}}\) and \(U^{C_{1}C_{2}}_\mathrm{CNOT}|11\rangle _{C_{1}C_{2}}=|10\rangle _{C_{1}C_{2}}\). After four CNOT operations with the particles \(C_{1}\), \(D_{1}\), \(E_{1}\), \(F_{1}\) used as the control qubits and the particles \(C_{2}\), \(D_{2}\), \(E_{2}\), \(F_{2}\) used as the target qubits, respectively, each logical quantum state \(|\Lambda _\mathrm{dp}\rangle _{ABCDEF}\) becomes

$$\begin{aligned} |\Lambda ^{(1)}_\mathrm{dp}\rangle _{ABCDEF}= & {} U^{C_{1}C_{2}}_\mathrm{CNOT}\otimes U_\mathrm{CNOT}^{D_{1}D_{2}}\otimes U_\mathrm{CNOT}^{E_{1}E_{2}}\otimes U_\mathrm{CNOT}^{F_{1}F_{2}}\otimes |\Lambda _\mathrm{dp}\rangle _{ABCDEF}\nonumber \\= & {} \frac{1}{4\sqrt{2}}[(|00\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|11\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|11\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|01\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|11\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}\nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,|00\rangle _{AB}|01\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|11\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|11\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|01\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|11\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|11\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}\nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,|01\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|11\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|11\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|01\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|11\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}})\nonumber \\&-\,(|01\rangle _{AB}|01\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|11\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}}\nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,|01\rangle _{AB}|01\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|11\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|11\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|01\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|11\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|01\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}}\nonumber \\&+\, |00\rangle _{AB}|11\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|11\rangle _{C_{1}C_{2}}|11\rangle _{D_{1}D_{2}}|11\rangle _{E_{1}E_{2}}|01\rangle _{F_{1}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|01\rangle _{C_{1}C_{2}}|01\rangle _{D_{1}D_{2}}|01\rangle _{E_{1}E_{2}}|11\rangle _{F_{1}F_{2}})]\nonumber \\ \end{aligned}$$
$$\begin{aligned}= & {} \frac{1}{4\sqrt{2}}[(|000000\rangle +|111111\rangle +|000011\rangle +|111100\rangle \nonumber \\&+\,|000101\rangle +|111010\rangle +|000110\rangle +|111001\rangle \nonumber \\&+\,|001001\rangle +|110110\rangle +|001111\rangle +|110000\rangle \nonumber \\&+\,|010001\rangle +|101110\rangle +|010010\rangle +|101101\rangle \nonumber \\&+\,|011000\rangle +|100111\rangle +|011101\rangle +|100010\rangle )\nonumber \\&-\,(|010100\rangle +|101011\rangle +|010111\rangle +|101000\rangle \nonumber \\&+\,|011011\rangle +|100100\rangle +|001010\rangle +|110101\rangle \nonumber \\&+\,|001100\rangle +|110011\rangle +|011110\rangle +|100001\rangle )]_{ABC_{1}D_{1}E_{1}F_{1}}\nonumber \\&\otimes |1111\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\= & {} |\Lambda \rangle _{ABC_{1}D_{1}E_{1}F_{1}}\otimes |1111\rangle _{C_{2}D_{2}E_{2}F_{2}} \end{aligned}$$
(11)

Appendix C: Logical six-particle entangled state \(|\Lambda _\mathrm{r}\rangle _{ABCDEF}\)

If the particles C, D, E, F of the entangled state \(|\Lambda \rangle _{ABCDEF}\) (see Eq. 1) are replaced with the corresponding logical qubits \(|0_\mathrm{r}\rangle =|\phi ^{+}\rangle \) or \(|1_\mathrm{r}\rangle =|\psi ^{-}\rangle \), respectively, the entangled state \(|\Lambda \rangle _{ABCDEF}\) becomes the logical six-particle entangled state \(|\Lambda _\mathrm{r}\rangle _{ABCDEF}\) as follows:

$$\begin{aligned} |\Lambda _\mathrm{r}\rangle _{ABCDEF}= & {} \frac{1}{4\sqrt{2}}[(|00\rangle _{AB}|0_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F} \\&+\,|11\rangle _{AB}|1_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|1_\mathrm{r}\rangle _{F} \\&+\,|00\rangle _{AB}|0_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|1_\mathrm{r}\rangle _{F} \\&+\,|11\rangle _{AB}|1_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F} \\&+\,|00\rangle _{AB}|0_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|1_\mathrm{r}\rangle _{F} \\&+\,|11\rangle _{AB}|1_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F} \\&+\,|00\rangle _{AB}|0_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F} \\&+\,|11\rangle _{AB}|1_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|1_\mathrm{r}\rangle _{F} \\&+\,|00\rangle _{AB}|1_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|1_\mathrm{r}{} \mathbf \rangle _{F} \\&+\,|11\rangle _{AB}|0_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F} \\&+\,|00\rangle _{AB}|1_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|1_\mathrm{r}\rangle _{F} \\&+\,|11\rangle _{AB}|0_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F} \\&+\,|01\rangle _{AB}|0_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|1_\mathrm{r}\rangle _{F} \\&+\,|10\rangle _{AB}|1_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F} \\&+\,|01\rangle _{AB}|0_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F} \\&+\,|10\rangle _{AB}|1_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|1_\mathrm{r}\rangle _{F} \\&+\,|01\rangle _{AB}|1_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F} \\&+\,|10\rangle _{AB}|0_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|1_\mathrm{r}\rangle _{F} \\&+\,|01\rangle _{AB}|1_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|1_\mathrm{r}\rangle _{F} \\&+\,|10\rangle _{AB}|0_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F}) \\ \end{aligned}$$
$$\begin{aligned}&-\,(|01\rangle _{AB}|0_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F} \\&+\,|10\rangle _{AB}|1_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|1_\mathrm{r}\rangle _{F} \\&+\,|01\rangle _{AB}|0_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|1_\mathrm{r}\rangle _{F} \\&+\,|10\rangle _{AB}|1_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F} \\&+\,|01\rangle _{AB}|1_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|1_\mathrm{r}\rangle _{F} \\&+\,|10\rangle _{AB}|0_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F} \\&+\,|00\rangle _{AB}|1_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F} \\&+\,|11\rangle _{AB}|0_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|1_\mathrm{r}\rangle _{F} \\&+\, |00\rangle _{AB}|1_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F} \\&+\,|11\rangle _{AB}|0_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|1_\mathrm{r}\rangle _{F} \\&+\,|01\rangle _{AB}|1_\mathrm{r}\rangle _{C}|1_\mathrm{r}\rangle _{D}|1_\mathrm{r}\rangle _{E}|0_\mathrm{r}\rangle _{F} \\&+\,|10\rangle _{AB}|0_\mathrm{r}\rangle _{C}|0_\mathrm{r}\rangle _{D}|0_\mathrm{r}\rangle _{E}|1_\mathrm{r}\rangle _{F})] \\= & {} \frac{1}{4\sqrt{2}}[(|00\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}} \\&+\,|11\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}} \\&+\,|00\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}} \\&+\,|11\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}} \\&+\,|00\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}} \\&+\,|11\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}} \\&+\,|00\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}} \\&+\,|11\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}} \\&+\,|00\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}} \\&+\,|11\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}} \\&+\,|00\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}} \\&+\,|11\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}} \\ \end{aligned}$$
$$\begin{aligned}&+\,|01\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|10\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|01\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|10\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|01\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|10\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|01\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|10\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}}) \nonumber \\&-\,(|01\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|10\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|01\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|10\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|01\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|10\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|00\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|11\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}} \nonumber \\&+\, |00\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|11\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|01\rangle _{AB}|\psi ^{-}\rangle _{C_{1}C_{2}}|\psi ^{-}\rangle _{D_{1}D_{2}}|\psi ^{-}\rangle _{E_{1}E_{2}}|\phi ^{+}\rangle _{F_{1}F_{2}} \nonumber \\&+\,|10\rangle _{AB}|\phi ^{+}\rangle _{C_{1}C_{2}}|\phi ^{+}\rangle _{D_{1}D_{2}}|\phi ^{+}\rangle _{E_{1}E_{2}}|\psi ^{-}\rangle _{F_{1}F_{2}})] \end{aligned}$$
(12)

It needs to be emphasized that the second equation of Eq. (12) is obtain by replacing \(|0_\mathrm{r}\rangle \) and \(|1_\mathrm{r}\rangle \) with \(|\phi ^{+}\rangle \) and \(|\psi ^{-}\rangle \), respectively.

Appendix D: The formula derivation of Eq. (5)

The CNOT operation satisfies

$$\begin{aligned} U_\mathrm{CNOT}^{C_{1}C_{2}}|\phi ^{+}\rangle _{C_{1}C_{2}}= & {} U_\mathrm{CNOT}^{C_{1}C_{2}} \otimes \frac{(|00\rangle _{C_{1}C_{2}}+|11\rangle _{C_{1}C_{2}})}{\sqrt{2}} =\frac{(|00\rangle _{C_{1}C_{2}}+|10\rangle _{C_{1}C_{2}})}{\sqrt{2}}\\= & {} \frac{(|0\rangle _{C_{1}}+|1\rangle _{C_{1}})}{\sqrt{2}}\otimes |0\rangle _{C_{2}}=|+\rangle _{C_{1}}|0\rangle _{C_{2}}, \end{aligned}$$

and

$$\begin{aligned} U_\mathrm{CNOT}^{C_{1}C_{2}}|\psi ^{-}\rangle _{C_{1}C_{2}}= & {} U_\mathrm{CNOT}^{C_{1}C_{2}} \otimes \frac{(|01\rangle _{C_{1}C_{2}}-|10\rangle _{C_{1}C_{2}})}{\sqrt{2}} =\frac{(|01\rangle _{C_{1}C_{2}}-|11\rangle _{C_{1}C_{2}})}{\sqrt{2}}\\= & {} \frac{(|0\rangle _{C_{1}}-|1\rangle _{C_{1}})}{\sqrt{2}}\otimes |1\rangle _{C_{2}}=|-\rangle _{C_{1}}|1\rangle _{C_{2}}. \end{aligned}$$

If the particles \(C_{1}\), \(D_{1}\), \(E_{1}\), \(F_{1}\) are used as the control qubits and the particles \(C_{2}\), \(D_{2}\), \(E_{2}\), \(F_{2}\) are used as the target qubits, respectively, the four CNOT operations make each logical quantum state \(|\Lambda _\mathrm{r}\rangle _{ABCDEF}\) become as follows:

$$\begin{aligned} |\Lambda ^{(1)}_\mathrm{r}\rangle _{ABCDEF}= & {} U_\mathrm{CNOT}^{C_{1}C_{2}}\otimes U_\mathrm{CNOT}^{D_{1}D_{2}}\otimes U_\mathrm{CNOT}^{E_{1}E_{2}} \otimes U_\mathrm{CNOT}^{F_{1}F_{2}}\otimes |\Lambda _\mathrm{r}\rangle _{ABCDEF}\nonumber \\= & {} \frac{1}{4\sqrt{2}}[(|00\rangle _{AB}|+\rangle _{C_{1}}|+\rangle _{D_{1}}|+\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |0000\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|-\rangle _{C_{1}}|-\rangle _{D_{1}}|-\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |1111\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|+\rangle _{C_{1}}|+\rangle _{D_{1}}|-\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |0011\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|-\rangle _{C_{1}}|-\rangle _{D_{1}}|+\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |1100\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|+\rangle _{C_{1}}|-\rangle _{D_{1}}|+\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |0101\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|-\rangle _{C_{1}}|+\rangle _{D_{1}}|-\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |1010\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|+\rangle _{C_{1}}|-\rangle _{D_{1}}|-\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |0110\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|-\rangle _{C_{1}}|+\rangle _{D_{1}}|+\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |1001\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|-\rangle _{C_{1}}|+\rangle _{D_{1}}|+\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |1001\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|+\rangle _{C_{1}}|-\rangle _{D_{1}}|-\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |0110\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|-\rangle _{C_{1}}|-\rangle _{D_{1}}|-\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |1111\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|+\rangle _{C_{1}}|+\rangle _{D_{1}}|+\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |0000\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,|01\rangle _{AB}|+\rangle _{C_{1}}|+\rangle _{D_{1}}|+\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |0001\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|-\rangle _{C_{1}}|-\rangle _{D_{1}}|-\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |1110\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|+\rangle _{C_{1}}|+\rangle _{D_{1}}|-\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |0010\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|-\rangle _{C_{1}}|-\rangle _{D_{1}}|+\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |1101\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|-\rangle _{C_{1}}|+\rangle _{D_{1}}|+\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |1000\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|+\rangle _{C_{1}}|-\rangle _{D_{1}}|-\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |0111\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|-\rangle _{C_{1}}|-\rangle _{D_{1}}|+\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |1101\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|+\rangle _{C_{1}}|+\rangle _{D_{1}}|-\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |0010\rangle _{C_{2}D_{2}E_{2}F_{2}})\nonumber \\&-\,(|01\rangle _{AB}|+\rangle _{C_{1}}|-\rangle _{D_{1}}|+\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |0100\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,|10\rangle _{AB}|-\rangle _{C_{1}}|+\rangle _{D_{1}}|-\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |1011\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|+\rangle _{C_{1}}|-\rangle _{D_{1}}|-\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |0111\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|-\rangle _{C_{1}}|+\rangle _{D_{1}}|+\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |1000\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|-\rangle _{C_{1}}|+\rangle _{D_{1}}|-\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |1011\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|+\rangle _{C_{1}}|-\rangle _{D_{1}}|+\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |0100\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|-\rangle _{C_{1}}|+\rangle _{D_{1}}|-\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |1010\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|+\rangle _{C_{1}}|-\rangle _{D_{1}}|+\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |0101\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\, |00\rangle _{AB}|-\rangle _{C_{1}}|-\rangle _{D_{1}}|+\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |1100\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|+\rangle _{C_{1}}|+\rangle _{D_{1}}|-\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |0011\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|-\rangle _{C_{1}}|-\rangle _{D_{1}}|-\rangle _{E_{1}}|+\rangle _{F_{1}}\otimes |1110\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|+\rangle _{C_{1}}|+\rangle _{D_{1}}|+\rangle _{E_{1}}|-\rangle _{F_{1}}\otimes |0001\rangle _{C_{2}D_{2}E_{2}F_{2}})] \end{aligned}$$
(13)

Appendix E: The formula derivation of Eq. (6)

Since the Hadamard gates satisfy \(H_{C_{1}}|+\rangle _{C_{1}}=|0\rangle _{C_{1}}\) and \(H_{C_{1}}|-\rangle _{C_{1}}=|1\rangle _{C_{1}}\), then the Hadamard gates on particles \(C_{1}\), \(D_{1}\), \(E_{1}\) and \(F_{1}\) make each quantum state \(|\Lambda ^{(1)}_\mathrm{r}\rangle _{ABCDEF}\) become as follows:

$$\begin{aligned} |\Lambda ^{(2)}_\mathrm{r}\rangle _{ABCDEF}= & {} H_{C_{1}}\otimes H_{D_{1}}\otimes H_{E_{1}} \otimes H_{F_{1}}\otimes |\Lambda ^{(1)}_\mathrm{r}\rangle _{ABCDEF}\nonumber \\= & {} \frac{1}{4\sqrt{2}}[(|00\rangle _{AB}|0000\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0000\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|1111\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1111\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|0011\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0011\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|1100\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1100\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|0101\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0101\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|1010\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1010\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|0110\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0110\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|1001\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1001\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|1001\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1001\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|0110\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0110\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|1111\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1111\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\,|11\rangle _{AB}|0000\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0000\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|0001\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0001\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|1110\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1110\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|0010\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0010\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|1101\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1101\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|1000\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1000\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|0111\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0111\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|1101\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1101\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|0010\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0010\rangle _{C_{2}D_{2}E_{2}F_{2}})\nonumber \\ \end{aligned}$$
$$\begin{aligned}&-\,(|01\rangle _{AB}|0100\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0100\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|1011\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1011\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|0111\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0111\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|1000\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1000\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|1011\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1011\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|0100\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0100\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|00\rangle _{AB}|1010\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1010\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|0101\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0101\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\, |00\rangle _{AB}|1100\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1100\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|11\rangle _{AB}|0011\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0011\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|01\rangle _{AB}|1110\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |1110\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\&+\,|10\rangle _{AB}|0001\rangle _{C_{1}D_{1}E_{1}F_{1}}\otimes |0001\rangle _{C_{2}D_{2}E_{2}F_{2}})] \end{aligned}$$
(14)

Appendix F: The formula derivation of Eq. (7)

According to Eq. (14) and the definition of CNOT operation, we obtain the following results after four CNOT operations are performed.

$$\begin{aligned} |\Lambda ^{(3)}_\mathrm{r}\rangle _{ABCDEF}= & {} U_\mathrm{CNOT}^{C_{1}C_{2}}\otimes U_\mathrm{CNOT}^{D_{1}D_{2}}\otimes U_\mathrm{CNOT}^{E_{1}E_{2}} \otimes U_\mathrm{CNOT}^{F_{1}F_{2}}\otimes |\Lambda ^{(2)}_\mathrm{r}\rangle _{ABCDEF}\nonumber \\= & {} \frac{1}{4\sqrt{2}}[(|000000\rangle +|111111\rangle +|000011\rangle +|111100\rangle \nonumber \\&+\,|000101\rangle +|111010\rangle +|000110\rangle +|111001\rangle \nonumber \\&+\,|001001\rangle +|110110\rangle +|001111\rangle +|110000\rangle \nonumber \\&+\,|010001\rangle +|101110\rangle +|010010\rangle +|101101\rangle \nonumber \\&+\,|011000\rangle +|100111\rangle +|011101\rangle +|100010\rangle )\nonumber \\&-\,(|010100\rangle +|101011\rangle +|010111\rangle +|101000\rangle \nonumber \\&+\,|011011\rangle +|100100\rangle +|001010\rangle +|110101\rangle \nonumber \\&+\,|001100\rangle +|110011\rangle +|011110\rangle +|100001\rangle )]_{ABC_{1}D_{1}E_{1}F_{1}}\nonumber \\&\otimes |0000\rangle _{C_{2}D_{2}E_{2}F_{2}}\nonumber \\= & {} |\Lambda \rangle _{ABC_{1}D_{1}E_{1}F_{1}}\otimes |0000\rangle _{C_{2}D_{2}E_{2}F_{2}} \end{aligned}$$
(15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, YF., Ma, WP. Three-party quantum secure direct communication against collective noise. Quantum Inf Process 16, 252 (2017). https://doi.org/10.1007/s11128-017-1703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1703-y

Keywords

Navigation