Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Analyses and improvement of a broadcasting multiple blind signature scheme based on quantum GHZ entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A broadcasting multiple blind signature scheme based on quantum GHZ entanglement has been presented recently. It is said that the scheme’s unconditional security is guaranteed by adopting quantum key preparation, quantum encryption algorithm and quantum entanglement. In this paper, we prove that each signatory can get the signed message just by an intercept–resend attack. Then, we show there still exist some participant attacks and external attacks. Specifically, we verify the message sender Alice can impersonate each signatory to sign the message at will, and so is the signature collector Charlie. Also, we demonstrate that the receiver Bob can forge the signature successfully, and with respect to the external attacks, the eavesdropper Eve can modify the signature at random. Besides, we discover Eve can change the signed message at random, and Eve can impersonate Alice as the message sender without being discovered. In particular, we propose an improved scheme based on the original one and show that it is secure against not only the attacks mentioned above but also some collusion attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gottesman, D., Chuang, I.: Quantum digital signatures. arxiv preprint: arXiv:quant-ph/0105032 (2001)

  2. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  3. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 042325 (2010)

    Article  ADS  Google Scholar 

  5. Yin, X.R., Ma, W.P., Liu, W.Y.: Quantum proxy group signature scheme with \(\chi \)-type entangled states. Int. J. Quantum Inf. 10, 1250041 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  7. Wen, X., Chen, Y., Fang, J.: An inter-bank E-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(1), 549–558 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Cao, H.J., Huang, J., Yu, Y.F., et al.: A quantum proxy signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 53(9), 3095–3100 (2014)

    Article  MATH  Google Scholar 

  9. Xu, G.: Novel quantum proxy signature without entanglement. Int. J. Theor. Phys. 54(8), 2605–2612 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wen, X., Tian, Y., Ji, L., et al.: A group signature scheme based on quantum teleportation. Phys. Scr. 81(5), 055001 (2010)

    Article  ADS  MATH  Google Scholar 

  11. Wen, X.: An E-payment system based on quantum group signature. Phys. Scr. 82(6), 065403 (2010)

    Article  MATH  Google Scholar 

  12. Xu, R., Huang, L., Yang, W., et al.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284(14), 3654–3658 (2011)

    Article  ADS  Google Scholar 

  13. Zhang, K., Song, T., Zuo, H., et al.: A secure quantum group signature scheme based on Bell states. Phys. Scr. 87(4), 045012 (2013)

    Article  ADS  Google Scholar 

  14. Xu, G.B., Zhang, K.J.: A novel quantum group signature scheme without using entangled states. Quantum Inf. Process. 14(7), 2577–2587 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Su, Q., et al.: Quantum blind signature based on two-state vector formalism. Opt. Commun. 283(21), 4408–4410 (2010)

    Article  ADS  Google Scholar 

  16. Yin, X.R., Ma, W.P., Liu, W.Y.: A blind quantum signature scheme with-type entangled states. Int. J. Theor. Phys. 51(2), 455–461 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, T. S., Chen, Y., Chang, T. H., et al.: Quantum blind signature based on quantum circuit. In: 2014 IEEE 14th International Conference on Nanotechnology (IEEE-NANO’14), IEEE, pp. 868–872 (2014)

  18. Lou, X., Chen, Z., Guo, Y.: A weak quantum blind signature with entanglement permutation. Int. J. Theor. Phys. 54(9), 3283–3292 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shi, W.M., Zhang, J.B., Zhou, Y.H., et al.: A new quantum blind signature with unlinkability. Quantum Inf. Process. 14(8), 3019–3030 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Wen, X.J., Liu, Y., Sun, Y.: Quantum multi-signature protocol based on teleportation. Zeitschrift fur Naturforschung A 62(3/4), 147 (2007)

    ADS  MATH  Google Scholar 

  21. Wen, X., Liu, Y.: A realizable quantum sequential multi-signature scheme. Dianzi Xuebao (Acta Electron. Sin.) 35(6), 1079–1083 (2007)

    Google Scholar 

  22. Tian, Y., Chen, H., Ji, S., et al.: A broadcasting multiple blind signature scheme based on quantum teleportation. Opt. Quantum Electron. 46(6), 769–777 (2014)

    Article  Google Scholar 

  23. Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A. 84(2), 022344 (2011)

    Article  ADS  Google Scholar 

  24. Zou, X., Qiu, D.: Attack and improvements of fair quantum blind signature schemes. Quantum Inf. Process. 12(6), 2071–2085 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Lin, S., Yu, C.H., Guo, G.D.: Reexamining the security of fair quantum blind signature schemes. Quantum Inf. Process. 13(11), 2407–2415 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tian, Y., Chen, H., Gao, Y., et al.: A broadcasting multiple blind signature scheme based on quantum GHZ entanglement. Int. J. Mod. Phys. Conf. Ser. 33 (2014)

  27. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Commun. Sci. 560, 7–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  29. Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    Article  ADS  Google Scholar 

  30. Kim, T., Choi, J.W., Jho, N.S., et al.: Quantum messages with signatures forgeable in arbitrated quantum signature schemes. Phys. Scr. 90(2), 025101 (2015)

    Article  ADS  Google Scholar 

  31. Yu, C.H., Guo, G.D., Lin, S.: Arbitrated quantum signature scheme based on reusable key. Sci. China Phys. Mech. Astron. 57(11), 2079–2085 (2014)

    Article  ADS  Google Scholar 

  32. Wen, X., Niu, X., Ji, L.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)

    Article  ADS  Google Scholar 

  33. Zuo, H., Zhang, K., Song, T.: Security analysis of quantum multi-signature protocol based on teleportation. Quantum Inf. Process. 12(7), 2343–2353 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Yang, Y., Wang, Y., Teng, Y.: Scalable arbitrated quantum signature of classical messages with multi-signers. Commun. Theor. Phys. 54(7), 84–88 (2010)

    ADS  MATH  Google Scholar 

  35. Yang, Y.G., Zhou, Z., Teng, Y.W.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D 61(3), 773–778 (2011)

    Article  ADS  Google Scholar 

  36. Shi, W.M., Zhou, Y.H., Yang, Y.G.: Comment on the enhanced quantum blind signature protocol. Quantum Inf. Process. 13(6), 1305–1312 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Xiao, M., Li, Z.: Quantum broadcasting multiple blind signature with constant size. Quantum Inf. Process. 15(9), 1–14 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Yin, H.L., Fu, Y., Chen, Z.B.: Practical quantum digital signature. Phys. Rev. A. 93(3), 032316 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their very helpful suggestions that greatly helped to improve the quality of this paper. This work is supported in part by the National Natural Science Foundation of China (Nos. 61572532, 61272058), the Natural Science Foundation of Qiannan Normal College for Nationalities joint Guizhou Province of China (No. Qian-Ke-He LH Zi[2015]7719), the Natural Science Foundation of Central Government Special Fund for Universities of West China (No. 2014ZCSX17) and the Foundation of Graduate Education Reform of Wuyi University (No. YJS-JGXM-14-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daowen Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Qiu, D., Zou, X. et al. Analyses and improvement of a broadcasting multiple blind signature scheme based on quantum GHZ entanglement. Quantum Inf Process 16, 150 (2017). https://doi.org/10.1007/s11128-017-1602-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1602-2

Keywords

Navigation