Abstract
In this paper, we study the relation among quantum coherence, uncertainty, steerability of quantum coherence based on skew information and quantum phase transition in the spin model by employing quantum renormalization-group method. Interestingly, the results show that the value of the local quantum uncertainty is equal to the local quantum coherence corresponding to local observable \(\sigma _z\) in XXZ model, and unlikely in XY model, local quantum uncertainty is minimal optimization of the local quantum coherence over local observable \(\sigma _x\) and this proposition can be generalized to a multipartite system. Therefore, one can directly achieve quantum correlation measured by local quantum uncertainty and coherence by choosing different local observables \(\sigma _x\), \(\sigma _z\), corresponding to the XY model and XXZ model separately. Meanwhile, steerability of quantum coherence in XY and XXZ model is investigated systematically, and our results reveal that no matter what times the QRG iterations are carried out, the quantum coherence of the state of subsystem cannot be steerable, which can also be suitable for block–block steerability of local quantum coherence in both XY and XXZ models. On the other hand, we have illustrated that the quantum coherence and uncertainty measure can efficiently detect the quantum critical points associated with quantum phase transitions after several iterations of the renormalization. Moreover, the nonanalytic and scaling behaviors of steerability of local quantum coherence have been also taken into consideration.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev. 130(6), 2529 (1963)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)
Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)
Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)
Olliver, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)
Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. 90, 050401 (2003)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)
Aberg, J.: Quantifying Superposition. arXiv:quant-ph/0612146
Shao, L.-H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A. 91, 042120 (2015)
Streltsov, A.: Genuine Quantum Coherence. arXiv:1511.08346
Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)
Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Liu, C.C., Shi, J.D., Ding, Z.Y., Ye, L.: Exploring the renormalization of quantum discord and Bell non-locality in the one-dimensional transverse Ising model. Quantum Inf. Process. 15, 3209–3221 (2016)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002)
Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)
Osterloh, A., Plastina, F., Fazio, R., Palma, G.M.: Dynamics of entanglement in one-dimensional spin systems. Phys. Rev. A 69, 022304 (2004)
Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (2011)
Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)
Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)
Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110(24), 240402 (2013)
Wigner, E.P., Yanase, M.M.: Information content of distribution. Proc. Natl. Acad. Sci. USA 49, 910–918 (1963)
Vidal, G.: Entanglement renormalization. Phys. Rev. Lett. 99, 220405 (2007)
Ferrenberg, A.M., Swendsen, R.H.: New Monte Carlo technique for studying phase transitions. Phys. Rev. Lett. 61, 2635 (1988)
Wolf, M.M., Ortiz, G., Verstraete, F., Cirac, J.I.: Quantum phase transitions in matrix product systems. Phys. Rev. Lett. 97, 110403 (2006)
Wilson, K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975)
Pefeuty, P., Jullian, R., Penson, K.L.: In: Burkhardt, T.W., van Leeuwen J.M.J. (eds.) Real-Space Renormalizaton, Chap. 5. Springer, Berlin (1982)
Langari, A.: Quantum renormalization group of XYZ model in a transverse magnetic field. Phys. Rev. B 69, 100402(R) (2004)
Mondal, D., Pramanik, T., Pati, A.K.: Steerability of Local Quantum Coherence. arXiv:1508.03770v2 (2015)
Gupta, R., DeLapp, J., Batrouni, G.G., Fox, G.C., Baille, C.F., Apostolakis, J.: Phase Transition in the 2D XY model. Phys. Rev. Lett. 61, 1996 (1988)
Karpat, G., Cakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90(10), 104431 (2014)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96(1), 010401 (2006)
Rau, A.R.P.: Algebraic characterization of X-states in quantum information. J. Phys. A 42, 412002 (2009)
Latorre, J.I., Lütken, C.A., Rico, E., Vidal, G.: Fine-grained entanglement loss along renormalization-group flows. Phys. Rev. A 71, 034301 (2005)
Acknowledgements
This work was supported by the National Science Foundation of China under Grant Nos. 11575001 and 11605028, and also by the Natural Science Research Project of Education Department of Anhui Province of China (Grant No. KJ2013A205).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, CC., Ye, L. Probing quantum coherence, uncertainty, steerability of quantum coherence and quantum phase transition in the spin model. Quantum Inf Process 16, 138 (2017). https://doi.org/10.1007/s11128-017-1588-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1588-9