Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Probing quantum coherence, uncertainty, steerability of quantum coherence and quantum phase transition in the spin model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study the relation among quantum coherence, uncertainty, steerability of quantum coherence based on skew information and quantum phase transition in the spin model by employing quantum renormalization-group method. Interestingly, the results show that the value of the local quantum uncertainty is equal to the local quantum coherence corresponding to local observable \(\sigma _z\) in XXZ model, and unlikely in XY model, local quantum uncertainty is minimal optimization of the local quantum coherence over local observable \(\sigma _x\) and this proposition can be generalized to a multipartite system. Therefore, one can directly achieve quantum correlation measured by local quantum uncertainty and coherence by choosing different local observables \(\sigma _x\), \(\sigma _z\), corresponding to the XY model and XXZ model separately. Meanwhile, steerability of quantum coherence in XY and XXZ model is investigated systematically, and our results reveal that no matter what times the QRG iterations are carried out, the quantum coherence of the state of subsystem cannot be steerable, which can also be suitable for block–block steerability of local quantum coherence in both XY and XXZ models. On the other hand, we have illustrated that the quantum coherence and uncertainty measure can efficiently detect the quantum critical points associated with quantum phase transitions after several iterations of the renormalization. Moreover, the nonanalytic and scaling behaviors of steerability of local quantum coherence have been also taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev. 130(6), 2529 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)

    MATH  Google Scholar 

  3. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Olliver, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  6. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. 90, 050401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  9. Aberg, J.: Quantifying Superposition. arXiv:quant-ph/0612146

  10. Shao, L.-H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A. 91, 042120 (2015)

    Article  ADS  Google Scholar 

  11. Streltsov, A.: Genuine Quantum Coherence. arXiv:1511.08346

  12. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  13. Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  14. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Liu, C.C., Shi, J.D., Ding, Z.Y., Ye, L.: Exploring the renormalization of quantum discord and Bell non-locality in the one-dimensional transverse Ising model. Quantum Inf. Process. 15, 3209–3221 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  17. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002)

    Article  ADS  Google Scholar 

  18. Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  19. Osterloh, A., Plastina, F., Fazio, R., Palma, G.M.: Dynamics of entanglement in one-dimensional spin systems. Phys. Rev. A 69, 022304 (2004)

    Article  ADS  Google Scholar 

  20. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  21. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  22. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110(24), 240402 (2013)

    Article  ADS  Google Scholar 

  24. Wigner, E.P., Yanase, M.M.: Information content of distribution. Proc. Natl. Acad. Sci. USA 49, 910–918 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Vidal, G.: Entanglement renormalization. Phys. Rev. Lett. 99, 220405 (2007)

    Article  ADS  Google Scholar 

  26. Ferrenberg, A.M., Swendsen, R.H.: New Monte Carlo technique for studying phase transitions. Phys. Rev. Lett. 61, 2635 (1988)

    Article  ADS  Google Scholar 

  27. Wolf, M.M., Ortiz, G., Verstraete, F., Cirac, J.I.: Quantum phase transitions in matrix product systems. Phys. Rev. Lett. 97, 110403 (2006)

    Article  ADS  Google Scholar 

  28. Wilson, K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  29. Pefeuty, P., Jullian, R., Penson, K.L.: In: Burkhardt, T.W., van Leeuwen J.M.J. (eds.) Real-Space Renormalizaton, Chap. 5. Springer, Berlin (1982)

  30. Langari, A.: Quantum renormalization group of XYZ model in a transverse magnetic field. Phys. Rev. B 69, 100402(R) (2004)

    Article  ADS  Google Scholar 

  31. Mondal, D., Pramanik, T., Pati, A.K.: Steerability of Local Quantum Coherence. arXiv:1508.03770v2 (2015)

  32. Gupta, R., DeLapp, J., Batrouni, G.G., Fox, G.C., Baille, C.F., Apostolakis, J.: Phase Transition in the 2D XY model. Phys. Rev. Lett. 61, 1996 (1988)

    Article  ADS  Google Scholar 

  33. Karpat, G., Cakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90(10), 104431 (2014)

    Article  ADS  Google Scholar 

  34. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96(1), 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  35. Rau, A.R.P.: Algebraic characterization of X-states in quantum information. J. Phys. A 42, 412002 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Latorre, J.I., Lütken, C.A., Rico, E., Vidal, G.: Fine-grained entanglement loss along renormalization-group flows. Phys. Rev. A 71, 034301 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China under Grant Nos. 11575001 and 11605028, and also by the Natural Science Research Project of Education Department of Anhui Province of China (Grant No. KJ2013A205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CC., Ye, L. Probing quantum coherence, uncertainty, steerability of quantum coherence and quantum phase transition in the spin model. Quantum Inf Process 16, 138 (2017). https://doi.org/10.1007/s11128-017-1588-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1588-9

Keywords

Navigation