Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Total quantum coherence and its applications

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum coherence is the most fundamental feature of quantum mechanics. The usual understanding of it depends on the choice of the basis, that is, the coherence of the same quantum state is different within different reference framework. To reveal all the potential coherence, we present the total quantum coherence measures in terms of two different methods. One is optimizing maximal basis-dependent coherence with all potential bases considered and the other is quantifying the distance between the state and the incoherent state set. Interestingly, the coherence measures based on relative entropy and \(l_2\) norm have the same form in the two different methods. In particular, we show that the measures based on the non-contractive \(l_2\) norm are also a good measure different from the basis-dependent coherence. In addition, we show that all the measures are analytically calculable and have all the good properties. The experimental schemes for the detection of these coherence measures are also proposed by multiple copies of quantum states instead of reconstructing the full density matrix. By studying one type of quantum probing schemes, we find that both the normalized trace in the scheme of deterministic quantum computation with one qubit and the overlap of two states in quantum overlap measurement schemes can be well described by the change of total coherence of the probing qubit. Hence the nontrivial probing always leads to the change of the total coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Winter, R.G., Steinberg, A.M., Attwood, D.: Coherence. Accessscience (McGraw-Hill, 2008). http://accessscience.com/content/coherence/146900

  2. Horodecki, R., et al.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. 90, 050401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  6. Scully, M.O., et al.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  7. Scully, M.O., et al.: Quantum heat engine power can be increased by noise-induced coherence. Proc. Natl. Acad. Sci. USA 108, 15097 (2011)

    Article  ADS  Google Scholar 

  8. Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013)

    Article  ADS  Google Scholar 

  9. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information Ch. 1. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Plenio, M.B., Virmani, S.: An Introduction to entanglement measures. Quantum Inf. Comput. 7, 1 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Modi, K., et al.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  12. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  13. Walls, D.F., Milburn, G.J.: Quantum Optics Ch.16. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  14. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  15. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  16. Filip, R.: Overlap and entanglement-witness measurements. Phys. Rev. A 65, 062320 (2002)

    Article  ADS  Google Scholar 

  17. Cunha, M.O.T.: The geometry of entanglement sudden death. New J. Phys. 9, 237 (2007)

    Article  MathSciNet  Google Scholar 

  18. Ann, K., Jaeger, G.: Finite-time destruction of entanglement and non-locality by environmental influences. Found. Phys 39, 790 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  20. Yu, C.S., Song, H.S.: Bipartite concurrence and localized coherence. Phys. Rev. A 80, 022324 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Yu, C.S., Zhang, Y., Zhao, H.Q.: Quantum correlation via quantum coherence. Quantum Inf. Proc. 13, 1437 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Wigner, E.P., Yanase, M.M.: Information content of distribution. Proc. Natl. Acad. Sci. USA 49, 910 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Luo, S.: Wigner–Yanase Skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  24. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  25. Horodecki, P., Ekert, A.: Method for direct detection of quantum entanglement. Phys. Rev. Lett. 89, 127902 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Cai, J.M., Song, W.: Novel schemes for directly measuring entanglement of general states. Phys. Rev. Lett. 101, 190503 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  27. Jin, J.S., et al.: Direct scheme for measuring the geometric quantum discord. J. Phys. A Math. Theor. 45, 115308 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Yu, C.S., Zhang, J., Fan, H.: Quantum dissonance is rejected in an overlap measurement scheme. Phys. Rev. A 86, 052317 (2012)

    Article  ADS  Google Scholar 

  29. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  30. Yu, C.S., et al.: Entangling power in deterministic quantum computation with one qubit. Phys. Rev. A 87, 022322 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-shui Yu.

Additional information

This work was supported by the National Natural Science Foundation of China, under Grant No. 11375036, the Xinghai Scholar Cultivation Plan and the Fundamental Research Funds for the Central Universities under Grant Nos. DUT15LK35 and DUT15TD47.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Cs., Yang, Sr. & Guo, Bq. Total quantum coherence and its applications. Quantum Inf Process 15, 3773–3784 (2016). https://doi.org/10.1007/s11128-016-1376-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1376-y

Keywords

Navigation