Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The universal path integral

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Path integrals calculate probabilities by summing over classical configurations of variables such as fields, assigning each configuration a phase equal to the action of that configuration. This paper defines a universal path integral, which sums over all computable structures. This path integral contains as sub-integrals all possible computable path integrals, including those of field theory, the standard model of elementary particles, discrete models of quantum gravity, string theory, etc. The universal path integral possesses a well-defined measure that guarantees its finiteness. The probabilities for events corresponding to sub-integrals can be calculated using the method of decoherent histories. The universal path integral supports a quantum theory of the universe in which the world that we see around us arises out of the interference between all computable structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Susskind, L.: The anthropic landscape of string theory. In: Carr, B. (ed.) Universe or multiverse. Cambridge University Press (2007). arXiv:hep-th/0302219

  2. Solomonoff, R.J.: A formal theory of inductive inference part I. Inf. Control 7, 1–22 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Solomonoff, R.J.: A formal theory of inductive inference part II. Inf. Control 7, 224–254 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chaitin, G.J.: Algorithmic Information Theory. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  5. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Probl. Inf. Transm. 1, 1–7 (1965)

    Google Scholar 

  6. Wilson, K.G.: The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583–600 (1983)

    Article  ADS  Google Scholar 

  7. Rothe, H.J.: Lattice Gauge Theories: An Introduction. World Scientific, Singapore (2005)

    Book  Google Scholar 

  8. Linde, A.: Sinks in the landscape, Boltzmann brains and the cosmological constant problem. J. Cosmol. Astropart. Phys. 22, 1–22 (2007)

    Google Scholar 

  9. Griffiths, R.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36, 219–272 (1984)

    Article  ADS  MATH  Google Scholar 

  10. Omnés, R.: Logical reformulation of quantum mechanics I–III. J. Stat. Phys. 53, 893–932, 933–955, 957–975 (1988)

  11. Omnés, R.: Logical reformulation of quantum mechanics IV. J. Stat. Phys. 57, 359–382 (1989)

    Article  ADS  Google Scholar 

  12. Omnés, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  13. Gell-Mann, M., Hartle, J.B.: Classical equations for quantum systems. Phys. Rev. D 47, 3345–3382 (1993). arXiv:gr-qc/9210010

    Article  ADS  MathSciNet  Google Scholar 

  14. Halliwell, J.J.: Decoherent histories and hydrodynamic equations. Phys. Rev. D 58, 105015 (1998). arXiv:quant-ph/9805062

    Article  ADS  MathSciNet  Google Scholar 

  15. Halliwell, J.J.: Somewhere in the universe: where is the information stored when histories decohere? Phys. Rev. D 60, 105031 (1999). arXiv:quant-ph/9902008

    Article  ADS  MathSciNet  Google Scholar 

  16. Halliwell, J.J.: Decoherent histories and the emergent classicality of local densities. Phys. Rev. Lett. 83, 2481–2484 (1999). arXiv:quant-ph/9905094

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Halliwell, J.J.: Decoherent histories for spacetime domains. In: Muga, J.G., Sala Mayato, R., Egususquiza, I.L. (eds.) Time in Quantum Mechanics. Springer, Berlin (2001). arXiv:quant-ph/0101099

    Google Scholar 

  18. Hartle, J.B.: Quantum pasts and the utility of history. Phys. Scr. T 76, 67–77 (1998). arXiv:gr-qc/9712001

    Article  ADS  MathSciNet  Google Scholar 

  19. Dowker, F., Kent, A.: Properties of consistent histories. Phys. Rev. Lett. 75, 3038–3041 (1995)

    Article  ADS  Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  21. Lloyd, S.: Universe as quantum computer. Complexity 3(1), 32–35 (1997). arXiv:quant-ph/9912088

    Article  MathSciNet  Google Scholar 

  22. Tegmark, M.: Is “the theory of everything” merely the ultimate ensemble theory? Ann. Phys. 270, 1–51 (1998). arXiv:gr-qc/9704009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Schmidhuber, J.: A computer scientist’s view of life, the universe, and everything. In: Freksa, C. (ed.) Foundations of Computer Science: Potential-Theory-Cognition, Lecture Notes in Computer Science, pp. 201–208, Springer (1997). arXiv:quant-ph/9904050

Download references

Acknowledgments

This work was supported by the W.M. Keck Center for Extreme Quantum Information Theory (xQIT), DARPA, ARO under a MURI program, NSF, ENI via the MIT Energy Initiative, Lockheed Martin, Intel, Jeffrey Epstein, and by FQXi. The authors would like to thank Janna Levin and Max Tegmark for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Lloyd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lloyd, S., Dreyer, O. The universal path integral. Quantum Inf Process 15, 959–967 (2016). https://doi.org/10.1007/s11128-015-1178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1178-7

Keywords

Navigation