Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Perfect discrimination of projective measurements with the rank of all projectors being one

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we focus on the global discrimination of projective measurements in which the rank of all projectors is one. Firstly, the relation between single-qubit observables and measurement–unitary operation–measurement scheme (M–U–M scheme) is studied. We show that single-qubit observables can generally not be perfectly discriminated by the M–U–M scheme, and the dimension is the most essential reason. Moreover, when we only consider that projective measurements on \(m\)-dimensional space with \(m\ge 3\) are perfectly discriminated by the M–U–M scheme, the concrete form of the general unitary matrix is presented, which improves the previous results. Lastly, these results are applied to perfectly distinguish projective measurements with the rank of all projectors being one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sacchi, M.F.: Optimal discrimination of quantum operations. Phys. Rev. A 71(6), 062340 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  2. Wang, G.M., Ying, M.S.: Unambiguous discrimination among quantum operations. Phys. Rev. A 73(4), 042301 (2006)

    Article  ADS  Google Scholar 

  3. Chefles, A., Kitagawa, A., Takeoka, M., Sasaki, M., Twamley, J.: Unambiguous discrimination among oracle operators. J. Phys. A: Math. Theor. 40, 10183–10217 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Duan, R.Y., Feng, Y., Ying, M.S.: Perfect distinguishability of quantum operations. Phys. Rev. Lett. 103(21), 210501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  5. Acín, A.: Statistical distinguishability between unitary operations. Phys. Rev. Lett. 87(17), 177901 (2001)

    Article  ADS  Google Scholar 

  6. DAriano, G.M., Presti, P.L., Paris, M.G.A.: Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett. 87(27), 270404 (2001)

    Article  Google Scholar 

  7. Duan, R.Y., Feng, Y., Ying, M.S.: Entanglement is not necessary for perfect discrimination between unitary operations. Phys. Rev. Lett. 98(10), 100503 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  8. Wu, X.D., Duan, R.Y.: Exact quantum search by parallel unitary discrimination schemes. Phys. Rev. A 78(1), 012303 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  9. Chiribella, G., DAriano, G.M., Perinotti, P.: Quantum circuit architecture. Phys. Rev. Lett. 101(6), 060401 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  10. Zhou, X.F., Zhang, Y.S., Guo, G.C.: Unitary transformations can be distinguished locally. Phys. Rev. Lett. 99(17), 170401 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  11. Duan, R.Y., Feng, Y., Ying, M.S.: Local distinguishability of multipartite unitary operations. Phys. Rev. Lett. 100(2), 020503 (2008)

    Article  ADS  Google Scholar 

  12. Li, L.Z., Qiu, D.W.: Local entanglement is not necessary for perfect discrimination between unitary operations acting on two qudits by local operations and classical communication. Phys. Rev. A 77(3), 032337 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  13. Childs, A.M., Preskill, J., Renes, J.: Quantum information and precision measurement. J. Mod. Opt. 47(2–3), 155–176 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  14. Chefles, A., Sasaki, M.: Retrodiction of generalized measurement outcomes. Phys. Rev. A 67(3), 032112 (2003)

    Article  ADS  Google Scholar 

  15. Ji, Z.F., Feng, Y., Duan, R.Y., Ying, M.S.: Identification and distance measures of measurement apparatus. Phys. Rev. Lett. 96(20), 200401 (2006)

    Article  ADS  Google Scholar 

  16. Ziman, M., Heinosaari, T.: Discrimination of quantum observables using limited resources. Phys. Rev. A 77(4), 042321 (2008)

    Article  ADS  Google Scholar 

  17. Fiurasek, J., Micuda, M.: Optimal two-copy discrimination of quantum measurements. Phys. Rev. A 80(4), 042312 (2009)

    Article  ADS  Google Scholar 

  18. Sedlak, M.: Quantum theory of unambiguous measurements. Acta Phys. Slovaca 59(6), 653–792 (2009)

    Article  ADS  Google Scholar 

  19. Sedlak, M., Ziman, M.: Optimal single-shot strategies for discrimination of quantum measurements. Phys. Rev. A 90(5), 052312 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  20. Mikova, M., Sedlak, M., Straka, I., Micuda, M., Ziman, M., Jezek, M., Dusek, M., Fiurasek, J.: Optimal entanglement-assisted discrimination of quantum measurements. Phys. Rev. A 90(2), 022317 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grants No. 61272057, No. 61170270), and the Beijing Higher Education Young Elite Teacher Project (Grants No. YETP0475, No. YETP0477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, TQ., Gao, F., Zhang, ZC. et al. Perfect discrimination of projective measurements with the rank of all projectors being one. Quantum Inf Process 14, 2645–2656 (2015). https://doi.org/10.1007/s11128-015-0992-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0992-2

Keywords

Navigation