Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Dualities and identities for entanglement-assisted quantum codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The dual of an entanglement-assisted quantum error-correcting (EAQEC) code is the code resulting from exchanging the original code’s information qubits with its ebits. To introduce this notion, we show how entanglement-assisted repetition codes and accumulator codes are dual to each other, much like their classical counterparts, and we give an explicit, general quantum shift-register circuit that encodes both classes of codes. We later show that our constructions are optimal, and this result completes our understanding of these dual classes of codes. We also establish the Gilbert–Varshamov bound and the Plotkin bound for EAQEC codes, and we use these to examine the existence of some EAQEC codes. Finally, we provide upper bounds on the block error probability when transmitting maximal-entanglement EAQEC codes over the depolarizing channel, and we derive variations of the hashing bound for EAQEC codes, which is a lower bound on the maximum rate at which reliable communication over Pauli channels is possible with the use of pre-shared entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. An \([[n, k, d;c]]\) EAQEC code is optimal in the sense that \(d\) is the highest achievable minimum distance for given parameters \(n\), \(k\), and \(c\).

  2. Poulin et al. described their decoder as a “maximum-likelihood” decoder [27], but a careful study of it reveals that their decoder should more properly be called a maximum a posteriori decoder.

References

  1. Ashikhmin, A., Litsyn, S.: Upper bounds on the size of quantum codes. IEEE Trans. Inf. Theory 45(4), 1206–1215 (1999)

    Google Scholar 

  2. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824–3851 (1996). http://arxiv.org/abs/quant-ph/9604024

    Google Scholar 

  3. Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. 83(15), 3081–3084 (1999). doi:10.1103/PhysRevLett.83.3081

    Article  ADS  Google Scholar 

  4. Bowen, G.: Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A 66, 052313 (2002)

    Article  ADS  Google Scholar 

  5. Brun, T.A., Devetak, I., Hsieh, M.-H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78(3), 405–408 (1997). http://arxiv.org/abs/quant-ph/9605005

    Google Scholar 

  7. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over \({GF}(4)\). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998). http://arxiv.org/abs/quant-ph/9608006

  8. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996). http://arxiv.org/abs/quant-ph/9512032

    Google Scholar 

  9. Devetak, I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51(1), 44–55 (2005). doi:10.1109/TIT.2004.839515

    Article  MathSciNet  MATH  Google Scholar 

  10. Devetak, I., Harrow, A.W., Winter, A.: A family of quantum protocols. Phys. Rev. Lett. 93(23), 230504 (2004). doi:10.1103/PhysRevLett.93.230504

    Article  MathSciNet  ADS  Google Scholar 

  11. Devetak, I., Harrow, A.W., Winter, A.: A resource framework for quantum Shannon theory. IEEE Trans. Inf. Theory 54(10), 4587–4618 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding. IEEE Trans. Inf. Theory 48(3), 580–598 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ekert, A., Macchiavello, C.: Quantum error-correction for communication. Phys. Rev. Lett. 77(12), 2585–2588 (1996)

    Article  ADS  Google Scholar 

  14. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. thesis, California Institute of Technology, Pasadena, CA (1997). http://arxiv.org/abs/quant-ph/9705052

  15. Guo, L., Li, R.: Linear plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013). doi:10.1103/PhysRevA.87.032309

    Article  ADS  Google Scholar 

  16. Hsieh, M.-H., Brun, T.A., Devetak, I.: Entanglement-assisted quantum quasi-cyclic low-density parity-check codes. Phys. Rev. A 79, 032340 (2009). http://arxiv.org/abs/0803.0100

  17. Hsieh, M.-H., Yen, W.-T., Hsu, L.-Y.: High performance entanglement-assisted quantum ldpc codes need little entanglement. IEEE Trans. Inf. Theory 57(3), 1761–1769 (2011). doi:10.1109/TIT.2011.2104590

    Article  MathSciNet  Google Scholar 

  18. Knapp, A.W.: Basic Algebra. Birkhäuser, Boston (2006)

    Book  MATH  Google Scholar 

  19. Knill, E., Laflamme, R.: A theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  20. Lai, C.-Y., Brun, T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes (2010). http://arxiv.org/abs/1008.2598v1

  21. Lai, C.-Y., Brun, T.A.: Entanglement-assisted quantum error-correcting codes with imperfect ebits. Phys. Rev. A 86, 032319 (2012). doi:10.1103/PhysRevA.86.032319

    Article  ADS  Google Scholar 

  22. Lai, C.-Y., Brun, T.A., Wilde, M.M.: Duality in entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 59(6), 4020–4024 (2013). doi:10.1109/TIT.2013.2246274

    Article  MathSciNet  Google Scholar 

  23. Lloyd, S.: Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613–1622 (1997). doi:10.1103/PhysRevA.55.1613

    Article  MathSciNet  ADS  Google Scholar 

  24. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam, The Netherlands (1977)

    MATH  Google Scholar 

  25. McEliece, R.J.: The Theory of Information and Coding. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  26. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK (2000)

    MATH  Google Scholar 

  27. Poulin, D., Tillich, J.P., Ollivier, H.: Quantum serial turbo codes. IEEE Trans. Inf. Theory 55(6), 2776–2798 (2009). doi:10.1109/TIT.2009.2018339

    Article  MathSciNet  Google Scholar 

  28. Rains, E.M.: Quantum weight enumerators. IEEE Trans. Inf. Theory 44(4), 1388–1394 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Rains, E.M.: Monotonicity of the quantum linear programming bound. IEEE Trans. Inf. Theory 45(7), 2489–2492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  31. Shaw, B., Wilde, M.M., Oreshkov, O., Kremsky, I., Lidar, D.A.: Encoding one logic qubit into six physical qubits. Phys. Rev. A 78, 012337 (2008)

    Article  ADS  Google Scholar 

  32. Shor, P.: The quantum channel capacity and coherent information. Lecture Notes, MSRI Workshop on Quantum Computation, In (2002)

  33. Shor, P., Laflamme, R.: Quantum analog of the MacWilliams identities for classical coding theory. Phys. Rev. Lett. 78(8), 1600–1602 (1997). doi:10.1103/PhysRevLett.78.1600

    Article  ADS  Google Scholar 

  34. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493–2496 (1995)

    Article  ADS  Google Scholar 

  35. Smith, G.: Upper and Lower Bounds on Quantum Codes. Ph.D. thesis, California Institute of Technology, Pasadena, CA (2006)

  36. Smith, G., Smolin, J.A.: Degenerate quantum codes for pauli channels. Phys. Rev. Lett. 98, 030501 (2007). doi:10.1103/PhysRevLett.98.030501

    Article  MathSciNet  ADS  Google Scholar 

  37. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793–797 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Steane, A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. London A 452, 2551–2576 (1996). http://arxiv.org/abs/quant-ph/9601029

  39. Steane, A.M.: Simple quantum error-correcting codes. Phys. Rev. A 54(6), 4741–4751 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Wilde, M.M., Hsieh, M.-H.: Entanglement boosts quantum turbo codes. In: Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on, pp. 445–449 (31 2011-Aug. 5). doi:10.1109/ISIT.2011.6034165.

  41. Wilde, M.M.: Quantum Coding with Entanglement. Ph.D. thesis, University of Southern California (2008). http://arxiv.org/abs/0806.4214

  42. Wilde, M.M.: Quantum-shift-register circuits. Phys. Rev. A 79(6), 062325 (2009). doi:10.1103/PhysRevA.79.062325

    Article  MathSciNet  ADS  Google Scholar 

  43. Wilde, M.M.: From Classical to Quantum Shannon Theory. http://arxiv.org/abs/1106.1445

  44. Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008). doi:10.1103/PhysRevA.77.064302

    Article  ADS  Google Scholar 

  45. Wilde, M.M., Brun, T.A.: Entanglement-assisted quantum convolutional coding. Phys. Rev. A 81, 042333 (2010). doi:10.1103/PhysRevA.81.042333

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Yi Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, CY., Brun, T.A. & Wilde, M.M. Dualities and identities for entanglement-assisted quantum codes. Quantum Inf Process 13, 957–990 (2014). https://doi.org/10.1007/s11128-013-0704-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0704-8

Keywords

Navigation