Abstract
The dual of an entanglement-assisted quantum error-correcting (EAQEC) code is the code resulting from exchanging the original code’s information qubits with its ebits. To introduce this notion, we show how entanglement-assisted repetition codes and accumulator codes are dual to each other, much like their classical counterparts, and we give an explicit, general quantum shift-register circuit that encodes both classes of codes. We later show that our constructions are optimal, and this result completes our understanding of these dual classes of codes. We also establish the Gilbert–Varshamov bound and the Plotkin bound for EAQEC codes, and we use these to examine the existence of some EAQEC codes. Finally, we provide upper bounds on the block error probability when transmitting maximal-entanglement EAQEC codes over the depolarizing channel, and we derive variations of the hashing bound for EAQEC codes, which is a lower bound on the maximum rate at which reliable communication over Pauli channels is possible with the use of pre-shared entanglement.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
An \([[n, k, d;c]]\) EAQEC code is optimal in the sense that \(d\) is the highest achievable minimum distance for given parameters \(n\), \(k\), and \(c\).
Poulin et al. described their decoder as a “maximum-likelihood” decoder [27], but a careful study of it reveals that their decoder should more properly be called a maximum a posteriori decoder.
References
Ashikhmin, A., Litsyn, S.: Upper bounds on the size of quantum codes. IEEE Trans. Inf. Theory 45(4), 1206–1215 (1999)
Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824–3851 (1996). http://arxiv.org/abs/quant-ph/9604024
Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. 83(15), 3081–3084 (1999). doi:10.1103/PhysRevLett.83.3081
Bowen, G.: Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A 66, 052313 (2002)
Brun, T.A., Devetak, I., Hsieh, M.-H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)
Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78(3), 405–408 (1997). http://arxiv.org/abs/quant-ph/9605005
Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over \({GF}(4)\). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998). http://arxiv.org/abs/quant-ph/9608006
Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996). http://arxiv.org/abs/quant-ph/9512032
Devetak, I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51(1), 44–55 (2005). doi:10.1109/TIT.2004.839515
Devetak, I., Harrow, A.W., Winter, A.: A family of quantum protocols. Phys. Rev. Lett. 93(23), 230504 (2004). doi:10.1103/PhysRevLett.93.230504
Devetak, I., Harrow, A.W., Winter, A.: A resource framework for quantum Shannon theory. IEEE Trans. Inf. Theory 54(10), 4587–4618 (2008)
DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding. IEEE Trans. Inf. Theory 48(3), 580–598 (2002)
Ekert, A., Macchiavello, C.: Quantum error-correction for communication. Phys. Rev. Lett. 77(12), 2585–2588 (1996)
Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. thesis, California Institute of Technology, Pasadena, CA (1997). http://arxiv.org/abs/quant-ph/9705052
Guo, L., Li, R.: Linear plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013). doi:10.1103/PhysRevA.87.032309
Hsieh, M.-H., Brun, T.A., Devetak, I.: Entanglement-assisted quantum quasi-cyclic low-density parity-check codes. Phys. Rev. A 79, 032340 (2009). http://arxiv.org/abs/0803.0100
Hsieh, M.-H., Yen, W.-T., Hsu, L.-Y.: High performance entanglement-assisted quantum ldpc codes need little entanglement. IEEE Trans. Inf. Theory 57(3), 1761–1769 (2011). doi:10.1109/TIT.2011.2104590
Knapp, A.W.: Basic Algebra. Birkhäuser, Boston (2006)
Knill, E., Laflamme, R.: A theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)
Lai, C.-Y., Brun, T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes (2010). http://arxiv.org/abs/1008.2598v1
Lai, C.-Y., Brun, T.A.: Entanglement-assisted quantum error-correcting codes with imperfect ebits. Phys. Rev. A 86, 032319 (2012). doi:10.1103/PhysRevA.86.032319
Lai, C.-Y., Brun, T.A., Wilde, M.M.: Duality in entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 59(6), 4020–4024 (2013). doi:10.1109/TIT.2013.2246274
Lloyd, S.: Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613–1622 (1997). doi:10.1103/PhysRevA.55.1613
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam, The Netherlands (1977)
McEliece, R.J.: The Theory of Information and Coding. Cambridge University Press, Cambridge (2002)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK (2000)
Poulin, D., Tillich, J.P., Ollivier, H.: Quantum serial turbo codes. IEEE Trans. Inf. Theory 55(6), 2776–2798 (2009). doi:10.1109/TIT.2009.2018339
Rains, E.M.: Quantum weight enumerators. IEEE Trans. Inf. Theory 44(4), 1388–1394 (1995)
Rains, E.M.: Monotonicity of the quantum linear programming bound. IEEE Trans. Inf. Theory 45(7), 2489–2492 (1999)
Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press, Cambridge (2008)
Shaw, B., Wilde, M.M., Oreshkov, O., Kremsky, I., Lidar, D.A.: Encoding one logic qubit into six physical qubits. Phys. Rev. A 78, 012337 (2008)
Shor, P.: The quantum channel capacity and coherent information. Lecture Notes, MSRI Workshop on Quantum Computation, In (2002)
Shor, P., Laflamme, R.: Quantum analog of the MacWilliams identities for classical coding theory. Phys. Rev. Lett. 78(8), 1600–1602 (1997). doi:10.1103/PhysRevLett.78.1600
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493–2496 (1995)
Smith, G.: Upper and Lower Bounds on Quantum Codes. Ph.D. thesis, California Institute of Technology, Pasadena, CA (2006)
Smith, G., Smolin, J.A.: Degenerate quantum codes for pauli channels. Phys. Rev. Lett. 98, 030501 (2007). doi:10.1103/PhysRevLett.98.030501
Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793–797 (1996)
Steane, A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. London A 452, 2551–2576 (1996). http://arxiv.org/abs/quant-ph/9601029
Steane, A.M.: Simple quantum error-correcting codes. Phys. Rev. A 54(6), 4741–4751 (1996)
Wilde, M.M., Hsieh, M.-H.: Entanglement boosts quantum turbo codes. In: Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on, pp. 445–449 (31 2011-Aug. 5). doi:10.1109/ISIT.2011.6034165.
Wilde, M.M.: Quantum Coding with Entanglement. Ph.D. thesis, University of Southern California (2008). http://arxiv.org/abs/0806.4214
Wilde, M.M.: Quantum-shift-register circuits. Phys. Rev. A 79(6), 062325 (2009). doi:10.1103/PhysRevA.79.062325
Wilde, M.M.: From Classical to Quantum Shannon Theory. http://arxiv.org/abs/1106.1445
Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008). doi:10.1103/PhysRevA.77.064302
Wilde, M.M., Brun, T.A.: Entanglement-assisted quantum convolutional coding. Phys. Rev. A 81, 042333 (2010). doi:10.1103/PhysRevA.81.042333
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lai, CY., Brun, T.A. & Wilde, M.M. Dualities and identities for entanglement-assisted quantum codes. Quantum Inf Process 13, 957–990 (2014). https://doi.org/10.1007/s11128-013-0704-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0704-8