Abstract
We present a quantum approach to play asymmetric coordination games, which are more general than symmetric coordination games such as the Battle of the Sexes game, the Chicken game and the Hawk–Dove game. Our results show that quantum entanglement can help the players to coordinate their strategies.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Myerson, R.B.: Game Theory: Analysis of Conflict. Havard University Press, Boston (1991)
Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291 (2000)
Nawaz, A., Toor, A.H.: Dilemma and quantum battle of sexes. J. Phys. A: Math. Theor. 37, 4437 (2004)
Fra̧ckiewicz, P.: The ultimate solution to the quantum battle of the sexes game. J. Phys. A: Math. Theor. 42, 365305 (2009)
Alonso-Sanz, R.: On a three-parameter quantum battle of the sexes cellular automaton. Quant. Inf. Process. 12, 1835 (2013)
Iqbal, A., Toor, A.H.: Quantum repeated games. Phys. Lett. A 300, 541 (2002)
Fra̧ckiewicz, P.: Quantum repeated games revisited. J. Phys. A: Math. Theor. 45, 085307 (2012)
Iqbal, A., Toor, A.H.: Quantum mechanics gives stability to a Nash equilibrium. Phys. Rev. A 65, 022306 (2002)
Yu, T., Ben-Av, R.: Evolutionarily stable sets in quantum penny flip games. Quant. Inf. Process. 12, 2143 (2013)
Iqbal, A., Toor, A.H.: Backwards-induction outcome in a quantum game. Phys. Rev. A 65, 052328 (2002)
Chen, K.-Y., Hogg, T., Beausoleil, R.: A Quantum treatment of public goods economics. Quant. Inf. Process. 1, 449 (2002)
Sekiguchi, Y., Sakahara, K., Sato, T.: Existence of equilibria in quantum Bertrand–Edgeworth duopoly game. Quant. Inf. Process. 11, 1371 (2012)
Nawaz, A., Toor, A.H.: Quantum games with correlated noise. J. Phys. A: Math. Gen. 39, 9321 (2006)
Nawaz, A.: Prisoners’ dilemma in the presence of collective dephasing. J. Phys. A: Math. Theor. 45, 195304 (2012)
Chen, K.-Y., Hogg, T.: How well do people play a quantum prisoner’s dilemma? Quant. Inf. Process. 5, 43 (2006)
Chen, K.-Y., Hogg, T.: Experiments with probabilistic quantum auctions. Quant. Inf. Process. 7, 139 (2008)
Benjamin, S.C.: Comment on “A quantum approach to static games of complete information”. Phys. Lett. A 277, 180 (2000)
Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999)
Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47, 2543 (2000)
Marinatto, L., Weber, T.: Reply to “Comment on: A quantum approach to static games of complete information”. Phys. Lett. A 277, 183 (2000)
Iqbal, A., Toor, A.H.: Quantum cooperative games. Phys. Lett. A 293, 103 (2002)
Khan, S., Ramzan, M., Khan, M.: Quantum Stackelberg duopoly in the presence of correlated noise. J. Phys. A: Math. Theor. 43, 375301 (2010)
Acknowledgments
We are very grateful to the reviewers for their invaluable comments and detailed suggestions that helped to improve the quality of this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Situ, H. A quantum approach to play asymmetric coordination games. Quantum Inf Process 13, 591–599 (2014). https://doi.org/10.1007/s11128-013-0675-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0675-9