Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A quantum approach to play asymmetric coordination games

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a quantum approach to play asymmetric coordination games, which are more general than symmetric coordination games such as the Battle of the Sexes game, the Chicken game and the Hawk–Dove game. Our results show that quantum entanglement can help the players to coordinate their strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Myerson, R.B.: Game Theory: Analysis of Conflict. Havard University Press, Boston (1991)

    MATH  Google Scholar 

  2. Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Nawaz, A., Toor, A.H.: Dilemma and quantum battle of sexes. J. Phys. A: Math. Theor. 37, 4437 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Fra̧ckiewicz, P.: The ultimate solution to the quantum battle of the sexes game. J. Phys. A: Math. Theor. 42, 365305 (2009)

    Article  MathSciNet  Google Scholar 

  5. Alonso-Sanz, R.: On a three-parameter quantum battle of the sexes cellular automaton. Quant. Inf. Process. 12, 1835 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Iqbal, A., Toor, A.H.: Quantum repeated games. Phys. Lett. A 300, 541 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Fra̧ckiewicz, P.: Quantum repeated games revisited. J. Phys. A: Math. Theor. 45, 085307 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  8. Iqbal, A., Toor, A.H.: Quantum mechanics gives stability to a Nash equilibrium. Phys. Rev. A 65, 022306 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  9. Yu, T., Ben-Av, R.: Evolutionarily stable sets in quantum penny flip games. Quant. Inf. Process. 12, 2143 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Iqbal, A., Toor, A.H.: Backwards-induction outcome in a quantum game. Phys. Rev. A 65, 052328 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  11. Chen, K.-Y., Hogg, T., Beausoleil, R.: A Quantum treatment of public goods economics. Quant. Inf. Process. 1, 449 (2002)

    Article  MathSciNet  Google Scholar 

  12. Sekiguchi, Y., Sakahara, K., Sato, T.: Existence of equilibria in quantum Bertrand–Edgeworth duopoly game. Quant. Inf. Process. 11, 1371 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Nawaz, A., Toor, A.H.: Quantum games with correlated noise. J. Phys. A: Math. Gen. 39, 9321 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Nawaz, A.: Prisoners’ dilemma in the presence of collective dephasing. J. Phys. A: Math. Theor. 45, 195304 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  15. Chen, K.-Y., Hogg, T.: How well do people play a quantum prisoner’s dilemma? Quant. Inf. Process. 5, 43 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, K.-Y., Hogg, T.: Experiments with probabilistic quantum auctions. Quant. Inf. Process. 7, 139 (2008)

    Article  MATH  Google Scholar 

  17. Benjamin, S.C.: Comment on “A quantum approach to static games of complete information”. Phys. Lett. A 277, 180 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47, 2543 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Marinatto, L., Weber, T.: Reply to “Comment on: A quantum approach to static games of complete information”. Phys. Lett. A 277, 183 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Iqbal, A., Toor, A.H.: Quantum cooperative games. Phys. Lett. A 293, 103 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Khan, S., Ramzan, M., Khan, M.: Quantum Stackelberg duopoly in the presence of correlated noise. J. Phys. A: Math. Theor. 43, 375301 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are very grateful to the reviewers for their invaluable comments and detailed suggestions that helped to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haozhen Situ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Situ, H. A quantum approach to play asymmetric coordination games. Quantum Inf Process 13, 591–599 (2014). https://doi.org/10.1007/s11128-013-0675-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0675-9

Keywords

Navigation