Abstract
We propose a scheme for generation of NOON states via Raman transitions. In the scheme, a double \(\varLambda \)-type three-level atom is trapped in a high-Q bimodal cavity which is initially in vacuum states. After a series of operations and suitable interaction time, we can obtain highly nonclassical entangled states of one atom and N photons. Then it can easily be converted to purely photonic NOON states by application of a single projective measurement on the atom. The successful probability and fidelity of the scheme are finally discussed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)
Żukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71(26), 4287–4290 (1993)
Terhal, B.M., Wolf, M.M., Doherty, A.C.: Quantum entanglement: a modern perspective. Physicstoday 56(4), 46 (2003)
Du, Q.H., Lin, X.M., Chen, Z.H., et al.: Telepotation of an arbitrary mixture of diagonal states of multiqudit. Chin. Phys. B 17(3), 807 (2008)
Bollinger, J.J., Itano, W.M., Wineland, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54(6), R4649–R4652 (1996)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)
Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)
Kok, P.: Creating large NOON states with imperfect phase control. Opt. Spectrosc. 111(4), 520–522 (2011)
Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85(13), 2733–2736 (2000)
D’Angelo, M., Chekhova, M.V., Shih, Y.: Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87(1), 013602 (2001)
Edamatsu, K., Shimizu, R., Itoh, T.: Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. Phys. Rev. Lett. 89(21), 213601 (2002)
Lee, H., Kok, P., Cerf, N.J., Dowling, J.P.: Linear optics and projective measurements alone suffice to create large-photon-number path entanglement. Phys. Rev. A 65(3), 030101 (2002)
Kok, P., Lee, H., Dowling, J.P.: Creation of large-photon-number path entanglement conditioned on photodetection. Phys. Rev. A 65(5), 052104 (2002)
Cable, H., Dowling, J.P.: Efficient generation of large number-path entanglement using only linear optics and feed-forward. Phys. Rev. Lett. 99(16), 163604 (2007)
VanMeter, N.M., Lougovski, P., Uskov, D.B., et al.: General linear-optical quantum state generation scheme: applications to maximally path-entangled states. Phys. Rev. A 76(6), 063808 (2007)
Chen, Y.A., Bao, X.H., Yuan, Z.S., Chen, S., Zhao, B., Pan, J.W.: Heralded generation of an atomic NOON state. Phys. Rev. Lett. 104(4), 043601 (2010)
Merkel, S.T., Wilhelm, F.K.: Generation and detection of NOON states in superconducting circuits. New J. Phys. 12, 093036 (2010)
Kapale, K.T., Dowling, J.P.: A bootstrapping approach for generating maximally path-entangled photon states. Phys. Rev. Lett. 99(5), 053602 (2007)
Islam, R., Khosa, A.H., Saif, F.: Generation of Bell, NOON and W states via atom interferometry. J. Phys. B At. Mol. Opt. Phys. 41, 035505 (2008)
Islam, R., Ikram, M., Saif, F.: Engineering maximally entangled N-photon NOON field states using an atom interferometer based on Bragg regime cavity QED. J. Phys. B At. Mol. Opt. Phys. 40, 1359 (2007)
Zhong, Z.R.: A simplified scheme for realizing multi-atom NOON state. Opt. Commun. 283(1), 189–191 (2010)
Rodriguez-Mendez, D., Moya-Cessa, H.: NOON states in entangled cavities. Opt. Commun. 284(13), 3345–3347 (2011)
Lin, X., Su, W.J.: Generation of NOON sates for two atomic samples trapped in two distant cavities. Int. J. Theor. Phys. 50(8), 2592–2600 (2011)
Xiao, X.Q., Zeng, G.H.: A cavity-QED-based scheme for generating multi-photon NOON state. Int. J. Theor. Phys. 51(8), 2398–2405 (2012)
Niloghosyan, G., Hartmann, M.J., Plenio, M.B.: NOON-state generation in a cavity coupled to an atomic ensemble. Phys. Rev. Lett. 108(12), 123603 (2012)
Yang, R.C., Li, G., Li, J., Zhang, T.C.: Atomic N00N state generation in distant cavities by virtual excitations. Chin. Phys. B 20(6), 060302 (2011)
Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044 (1987)
Mitchell, M.W., Lundeen, J.S., Steinberg, A.M.: Super-resolving phase measurements with a multi-photon entangled state. Nature 429, 161–164 (2004)
Walther, P., Pan, J.W., Aspelmeyer, M., Ursin, R., Gasparoni, S., Zeilinger, A.: De Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004)
Afek, I., Ambar, O., Silberberg, Y.: High-NOON States by Mixing Quantum and Classical Light. Science 328, 879–881 (2010)
Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B. 80(20), 205326 (2009)
Law, C.K., Eberly, J.H.: Arbitrary control of a quantum electromagnetic field. Phys. Rev. Lett. 76(7), 1055–1058 (1996)
Chimczak, G., Tanaś, R.: The effect of a non-zero spontaneous decay rate on teleportation. J. Opt. B Quantum Semiclass. Opt. 4(6), 430 (2002)
Zheng, S.B., Guo, G.C.: Tunable phase gate for two atoms with an immunity to decoherence. Phys. Rev. A. 73(5), 052328 (2006)
Xue, P., Xiao, Y.F.: Universal quantum computation in decoherence-free subspace with neutral atoms. Phys. Rev. Lett. 97(14), 140501 (2006)
Sauer, J.A., Fortier, K.M., Chang, M.S., Hamley, C.D., Chapman, M.S.: Cavity QED with optically transported atoms. Phys. Rev. A. 69(5), 051804(R) (2004)
Wu, H.Z., Yang, Z.B., Zheng, S.B.: Effective scheme for generating cluster states in cavity QED. Chin. Phys. Lett. 24(11), 3055–3058 (2007)
Chwalla, M., Benhelm, J., Kim, K., Kirchmair, G., et al.: Absolute frequency measurement of the \( ^{40}\text{ Ca }^{+} 4s^{2}S_{1/2} -3d^{2}D_{3/2}\) clock transition. Phys. Rev. Lett. 102(2), 023002 (2009)
Biswas, A., Agarwal, G.S.: Quantum logic gates using Stark-shifted Raman transitions in a cavity. Phys. Rev. A 69(6), 062306 (2004)
James, D.F., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys. 85(6), 625–632 (2007)
Acknowledgments
We thank Dr. Huai-Zhi Wu and Zhen-Biao Yang for fruitful discussion. This work was funded by National Natural Science Foundation of China (Grant No. 60677044, 11005099) and by the Fundamental Research Funds for the central universities (Grant No. 201313012, 201013037).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Liu, K., Chen, LB., Shi, P. et al. Generation of NOON states via Raman transitions in a bimodal cavity. Quantum Inf Process 12, 3057–3066 (2013). https://doi.org/10.1007/s11128-013-0583-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0583-z