Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Generation of NOON states via Raman transitions in a bimodal cavity

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme for generation of NOON states via Raman transitions. In the scheme, a double \(\varLambda \)-type three-level atom is trapped in a high-Q bimodal cavity which is initially in vacuum states. After a series of operations and suitable interaction time, we can obtain highly nonclassical entangled states of one atom and N photons. Then it can easily be converted to purely photonic NOON states by application of a single projective measurement on the atom. The successful probability and fidelity of the scheme are finally discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Żukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71(26), 4287–4290 (1993)

    Article  ADS  Google Scholar 

  4. Terhal, B.M., Wolf, M.M., Doherty, A.C.: Quantum entanglement: a modern perspective. Physicstoday 56(4), 46 (2003)

    Google Scholar 

  5. Du, Q.H., Lin, X.M., Chen, Z.H., et al.: Telepotation of an arbitrary mixture of diagonal states of multiqudit. Chin. Phys. B 17(3), 807 (2008)

    Google Scholar 

  6. Bollinger, J.J., Itano, W.M., Wineland, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54(6), R4649–R4652 (1996)

    Article  ADS  Google Scholar 

  7. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

    Article  ADS  Google Scholar 

  8. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  9. Kok, P.: Creating large NOON states with imperfect phase control. Opt. Spectrosc. 111(4), 520–522 (2011)

    Article  ADS  Google Scholar 

  10. Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85(13), 2733–2736 (2000)

    Article  ADS  Google Scholar 

  11. D’Angelo, M., Chekhova, M.V., Shih, Y.: Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87(1), 013602 (2001)

    Article  ADS  Google Scholar 

  12. Edamatsu, K., Shimizu, R., Itoh, T.: Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. Phys. Rev. Lett. 89(21), 213601 (2002)

    Article  ADS  Google Scholar 

  13. Lee, H., Kok, P., Cerf, N.J., Dowling, J.P.: Linear optics and projective measurements alone suffice to create large-photon-number path entanglement. Phys. Rev. A 65(3), 030101 (2002)

    Article  ADS  Google Scholar 

  14. Kok, P., Lee, H., Dowling, J.P.: Creation of large-photon-number path entanglement conditioned on photodetection. Phys. Rev. A 65(5), 052104 (2002)

    Article  ADS  Google Scholar 

  15. Cable, H., Dowling, J.P.: Efficient generation of large number-path entanglement using only linear optics and feed-forward. Phys. Rev. Lett. 99(16), 163604 (2007)

    Article  ADS  Google Scholar 

  16. VanMeter, N.M., Lougovski, P., Uskov, D.B., et al.: General linear-optical quantum state generation scheme: applications to maximally path-entangled states. Phys. Rev. A 76(6), 063808 (2007)

    Article  ADS  Google Scholar 

  17. Chen, Y.A., Bao, X.H., Yuan, Z.S., Chen, S., Zhao, B., Pan, J.W.: Heralded generation of an atomic NOON state. Phys. Rev. Lett. 104(4), 043601 (2010)

    Article  ADS  Google Scholar 

  18. Merkel, S.T., Wilhelm, F.K.: Generation and detection of NOON states in superconducting circuits. New J. Phys. 12, 093036 (2010)

    Article  ADS  Google Scholar 

  19. Kapale, K.T., Dowling, J.P.: A bootstrapping approach for generating maximally path-entangled photon states. Phys. Rev. Lett. 99(5), 053602 (2007)

    Article  ADS  Google Scholar 

  20. Islam, R., Khosa, A.H., Saif, F.: Generation of Bell, NOON and W states via atom interferometry. J. Phys. B At. Mol. Opt. Phys. 41, 035505 (2008)

    Google Scholar 

  21. Islam, R., Ikram, M., Saif, F.: Engineering maximally entangled N-photon NOON field states using an atom interferometer based on Bragg regime cavity QED. J. Phys. B At. Mol. Opt. Phys. 40, 1359 (2007)

    Article  ADS  Google Scholar 

  22. Zhong, Z.R.: A simplified scheme for realizing multi-atom NOON state. Opt. Commun. 283(1), 189–191 (2010)

    Article  ADS  Google Scholar 

  23. Rodriguez-Mendez, D., Moya-Cessa, H.: NOON states in entangled cavities. Opt. Commun. 284(13), 3345–3347 (2011)

    Article  ADS  Google Scholar 

  24. Lin, X., Su, W.J.: Generation of NOON sates for two atomic samples trapped in two distant cavities. Int. J. Theor. Phys. 50(8), 2592–2600 (2011)

    Article  MATH  Google Scholar 

  25. Xiao, X.Q., Zeng, G.H.: A cavity-QED-based scheme for generating multi-photon NOON state. Int. J. Theor. Phys. 51(8), 2398–2405 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Niloghosyan, G., Hartmann, M.J., Plenio, M.B.: NOON-state generation in a cavity coupled to an atomic ensemble. Phys. Rev. Lett. 108(12), 123603 (2012)

    Article  ADS  Google Scholar 

  27. Yang, R.C., Li, G., Li, J., Zhang, T.C.: Atomic N00N state generation in distant cavities by virtual excitations. Chin. Phys. B 20(6), 060302 (2011)

    Article  ADS  Google Scholar 

  28. Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044 (1987)

    Article  ADS  Google Scholar 

  29. Mitchell, M.W., Lundeen, J.S., Steinberg, A.M.: Super-resolving phase measurements with a multi-photon entangled state. Nature 429, 161–164 (2004)

    Article  ADS  Google Scholar 

  30. Walther, P., Pan, J.W., Aspelmeyer, M., Ursin, R., Gasparoni, S., Zeilinger, A.: De Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004)

    Article  ADS  Google Scholar 

  31. Afek, I., Ambar, O., Silberberg, Y.: High-NOON States by Mixing Quantum and Classical Light. Science 328, 879–881 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B. 80(20), 205326 (2009)

    Article  ADS  Google Scholar 

  33. Law, C.K., Eberly, J.H.: Arbitrary control of a quantum electromagnetic field. Phys. Rev. Lett. 76(7), 1055–1058 (1996)

    Article  ADS  Google Scholar 

  34. Chimczak, G., Tanaś, R.: The effect of a non-zero spontaneous decay rate on teleportation. J. Opt. B Quantum Semiclass. Opt. 4(6), 430 (2002)

    Article  ADS  Google Scholar 

  35. Zheng, S.B., Guo, G.C.: Tunable phase gate for two atoms with an immunity to decoherence. Phys. Rev. A. 73(5), 052328 (2006)

    Article  ADS  Google Scholar 

  36. Xue, P., Xiao, Y.F.: Universal quantum computation in decoherence-free subspace with neutral atoms. Phys. Rev. Lett. 97(14), 140501 (2006)

    Article  ADS  Google Scholar 

  37. Sauer, J.A., Fortier, K.M., Chang, M.S., Hamley, C.D., Chapman, M.S.: Cavity QED with optically transported atoms. Phys. Rev. A. 69(5), 051804(R) (2004)

    Article  ADS  Google Scholar 

  38. Wu, H.Z., Yang, Z.B., Zheng, S.B.: Effective scheme for generating cluster states in cavity QED. Chin. Phys. Lett. 24(11), 3055–3058 (2007)

    Article  ADS  Google Scholar 

  39. Chwalla, M., Benhelm, J., Kim, K., Kirchmair, G., et al.: Absolute frequency measurement of the \( ^{40}\text{ Ca }^{+} 4s^{2}S_{1/2} -3d^{2}D_{3/2}\) clock transition. Phys. Rev. Lett. 102(2), 023002 (2009)

    Article  ADS  Google Scholar 

  40. Biswas, A., Agarwal, G.S.: Quantum logic gates using Stark-shifted Raman transitions in a cavity. Phys. Rev. A 69(6), 062306 (2004)

    Article  ADS  Google Scholar 

  41. James, D.F., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys. 85(6), 625–632 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Huai-Zhi Wu and Zhen-Biao Yang for fruitful discussion. This work was funded by National Natural Science Foundation of China (Grant No. 60677044, 11005099) and by the Fundamental Research Funds for the central universities (Grant No. 201313012, 201013037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Liu or Yong-Jian Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, K., Chen, LB., Shi, P. et al. Generation of NOON states via Raman transitions in a bimodal cavity. Quantum Inf Process 12, 3057–3066 (2013). https://doi.org/10.1007/s11128-013-0583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0583-z

Keywords

Navigation