Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Combined influence of third-order dispersion, intra-pulse Raman scattering, and self-steepening effect on soliton temporal shifts in telecommunications

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Here, we discuss the influence of higher-order nonlinear effects like third-order dispersion, intra-pulse Raman scattering, and self-steepening effects on 1-ps soliton pulse shift or displacement from its initial position. The temporal shifts of soliton due to these higher-order nonlinear effects were studied numerically by “Method of Moments” to realize the contribution of these HOE on shifts. Further, we note the influence of positive and negative TOD on the shift produced by the combined HOE. The soliton shift is then analyzed in 160-Gbps telecommunication system implemented with conventional single-mode fiber (C-SMF) for the length 10 and 20 km. The disturbances between the adjacent soliton pulses in noted with different 16-bit data sequences, and the deterioration of system is characterized in terms of quality factor. It could be seen for an unchirped soliton of pulsewidth \(T_{\mathrm{o}}\sim 1\hbox {ps}\), the shift is highly influenced due to intra-pulse Raman scattering, while the shifting due to third-order dispersion can be treated negligibly small. Moreover, negative TOD was expected to inhibit the soliton temporal shift such that it would reduce collision with adjacent pulses; it results in more resonant radiation resulting in pulse decaying. Although negative TOD helps in good reception of pulses for 10 km, it fails to perform in system with 20 km C-SMF, where the dispersive components break more and more while traveling along the length of fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nakazawa, M.: Soliton transmission in telecommunication networks. IEEE Commun. Mag. 32, 34–41 (1994)

    Article  Google Scholar 

  2. Zhang, H.-Q., Tian, B., Xing, L., Li, H., Meng, X.-H.: Soliton interaction in the coupled mixed derivative nonlinear Schrodinger equations. Phys. Lett. A 373, 4315–4321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sarma, A.K., Kumar, A.: Perturbative effects on ultra-short soliton self-switching. Pramana 69, 575–587 (2007)

    Article  Google Scholar 

  4. Ranka, J.K., Windeler, R.S., Stentz, A.J.: Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000)

    Article  Google Scholar 

  5. Wang, J., Li, L., Li, Z., Zhou, G., Mihalache, D., Malomed, B.A.: Generation, compression and propagation of pulse trains under higher-order effects. Opt. Commun. 263, 328–336 (2006)

    Article  Google Scholar 

  6. Elgin, J.N., Brabec, T., Kelly, S.M.J.: A perturbative theory of soliton propagation in the presence of third-order dispersion. Opt. Commun. 114, 321–328 (1995)

    Article  Google Scholar 

  7. Mitschke, F.M., Mollenauer, L.F.: Discovery of the soliton self-frequency shift. Opt. Lett 11, 659–661 (1986)

    Article  Google Scholar 

  8. Anderson, D., Lisak, M.: Nonlinear asymmetric self-phase modulation and self-steepening of optical pulses in long waveguide. Phys. Rev. 27, 1393–1398 (1983)

    Article  Google Scholar 

  9. Yupapin, P.P., Jalil, M.A., Amiri, I.S., Naim, I., Ali, J.: New communication bands generated by using a soliton pulse within a resonator system. Circuits Syst. 1, 71–75 (2010)

    Article  Google Scholar 

  10. Husakou, A.V., Herrmann, J.: Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87, 203901 (2001)

    Article  Google Scholar 

  11. Sakamaki, K., Naka, M., Naganuma, M., Izutsu, M.: Soliton induced supercontinuum generation in photonic crystal fiber. IEEE J. Sel. Top. Quant. Elect. 10, 876–884 (2004)

    Article  Google Scholar 

  12. Dudley, J.M., Provino, L., Grossard, N., Maillotte, H., Windeler, R.S., Eggleton, B.J., Coen, S.: Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping”. J. Opt. Soc. Am. B 19, 765–771 (2002)

    Article  Google Scholar 

  13. Chan, M.-C., Chia, S.-H., Liu, T.-M., Tsai, T.-H., Ho, M.-C., Ivanov, A.A., Zheltikov, A.M., Liu, J.-Y., Liu, H.-L., Sun, C.-K.: 1.2- to 2.2\(\mu \)m tunable Raman soliton source based on a Cr: Forsterite Laser and a photonic-crystal fiber. IEEE Photon. Technol. Lett. 20, 900–902 (2008)

    Article  Google Scholar 

  14. Liu, W.-J., Leia, M.: All-optical switches using solitons within nonlinear fibers. J. Electromagn. Waves Appl. 27(18), 2288–2297 (2013)

    Article  Google Scholar 

  15. Xu, M., Li, Y., Zhang, T., Luo, J., Ji, J., Yang, S.: The analysis of all-optical logic gates based with tunable femtosecond soliton self-frequency shift. Opt. Express 22, 8349–8366 (2014)

    Article  Google Scholar 

  16. Zhao, W., Bourkoff, E.: Femtosecond pulse-propagation in optical fibers: higher-order effects. IEEE J. Quantum Electron. 24, 365–372 (1987)

    Article  Google Scholar 

  17. Li, S., Li, L., Li, Z., Zhou, G.: Properties of soliton solutions on a cw background in optical fibers with higher-order effects. J. Opt. Soc. Am. B 21, 2089–2094 (2004)

    Article  MathSciNet  Google Scholar 

  18. Hermann, A.H., William, S., Wong, W.S.: Solitons in optical communication. Rev. Mod. Phys. 68(2), 423–444 (1996)

    Article  Google Scholar 

  19. Nakazawa, M., Kubota, H., Suzuki, K., Yamada, E., Sahara, A.: Recent progress in soliton transmission technology. Chaos 10, 486–514 (2000)

    Article  Google Scholar 

  20. Wai, P.K.A., Menyuk, C.R., Chen, H.H., Lee, Y.C.: Soliton at zero group dispersion of a single model fiber. Opt. Lett. 12(8), 628–630 (1987)

    Article  Google Scholar 

  21. Noylender, O., Abraham, D., Eisenstein, G.: Propagation of short pulses with fluctuating peak power in the zero-dispersion wavelength region of single-mode fibers. J. Opt. Soc. Am. 14, 2904–2909 (1997)

    Article  Google Scholar 

  22. Kivshar, Y.S.: Nonlinear dynamics near the zero dispersion point in optical fibers. Phys. Rev. A 43(3), 1677–1679 (1991)

    Article  Google Scholar 

  23. WeiPing, Z.: Soliton propagation near zero-dispersion wavelength in birefringence fiber. Commun. Theor. Phys. 33, 157–160 (2000)

    Article  Google Scholar 

  24. Tsoy, E.N., de Sterke, C.M.: Dynamics of ultrashort pulses near zero dispersion wavelength. J. Opt. Soc. Am.B 23(11), 2425–2433 (2006)

    Article  MathSciNet  Google Scholar 

  25. Biancalana, F., Skryabin, D.V., Yulin, A.V.: Theory of the soliton self-frequency shift compensation by the resonant radiation in PCF. Phys. Rev. E 70, 016615 (2004)

    Article  Google Scholar 

  26. Tsigaridas, G., Polyzos, I., Giannetas, V., Persephonis, P.: Compensation of nonlinear absorption in a soliton communication system. Chaos Solitons Fractals 35, 151–160 (2008)

    Article  Google Scholar 

  27. Essiambre, R.-J., Agarwal, G.P.: Timing jitter analysis for optical communication systems using ultrashort solitons and dispersion-decreasing fibers. Opt. Commun. 131, 274–278 (1996)

    Article  Google Scholar 

  28. Essiambre, R.-J., Agarwal, G.P.: Timing jitter of ultrashort solitons in high-speed communication systems. I. General formulation and application to dispersion-decreasing fibers. J. Opt. Soc. Am. B 14, 314–322 (1997)

    Article  Google Scholar 

  29. Essiambre, R.-J., Agarwal, G.P.: Timing jitter of ultrashort solitons in high-speed communication systems. II. Control of jitter by periodic optical phase conjugation. J. Opt. Soc. Am. B 14, 323–330 (1997)

    Article  Google Scholar 

  30. Santhanam, J., Agrawal, G.P.: Raman-induced timing jitter in dispersion-managed optical communication systems. IEEE J. Sel. Top. Quantum Electron. 8, 632–639 (2002)

    Article  Google Scholar 

  31. Sofia, C.V.L., Mário, F.S.F.: Soliton propagation in the presence of intrapulse Raman scattering and nonlinear gain. Optics Communications 251, 415–422 (2005)

    Article  Google Scholar 

  32. Sofia, C.V.L., Mário, F.S.F.: Stable soliton propagation with self-frequency shift. Math. Comput. Simul. 74, 379–387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hitender, K., Fakir, C.: Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with self-steepening and self-frequency shift effects. Opt. Laser Technol. 54, 265–273 (2013)

    Article  Google Scholar 

  34. Huang, J., Lin, J., Lan, C., Wang, D.: The Raman non-gain and self-steepening effects in Raman fiber amplifiers. Optik 125, 772–776 (2014)

    Article  Google Scholar 

  35. Govindaraji, A., Mahalingam, A., Uthayakumar, A.: Femtosecond pulse switching in a fiber coupler with third order dispersion and self-steepening effects. Optik 125, 4135–4139 (2014)

    Article  Google Scholar 

  36. Dinda, T.P., Labruyere, A., Nakkeeran, K.: Theory of Raman effect on solitons in optical fibre systems: impact and control processes for high-speed long-distance transmission lines. Opt. Commun. 234, 137–151 (2004)

    Article  Google Scholar 

  37. Oda, S., Maruta, A.: All optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self phase modulation. Opt. Express 14, 7895–7902 (2006)

    Article  Google Scholar 

  38. Zhu, B., Yang, X.L.: The influence of higher-order effects on the transmission performances of the ultra-short soliton pulses and its suppression method. Sci. China 53, 182–190 (2010)

    Article  MathSciNet  Google Scholar 

  39. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (2008)

    MATH  Google Scholar 

  40. Santhanam, J., Agrawal, G.P.: Raman-induced spectral shifts in optical fibers: general theory based on the moment method. Opt. Commun. 222, 413–420 (2003)

    Article  Google Scholar 

  41. Fazcas, A., Sterian, P.: Second and third order dispersion effects analyzed by the split-step Fourier method for soliton propagation in optical fibers. J. Optoelectron. Adv. Mater. 14(3–4), 376–382 (2012)

    Google Scholar 

  42. Pal, D., Golam Ali, S.K., Talukdar, B.: Evolution of optical pulses in the presence of third-order dispersion. Pramana 72, 939–950 (2009)

    Article  Google Scholar 

  43. Zhuravlev, V.M., Zolotovskii, I.O., Korobko, D.A., Fotiadi, A.A.: Dynamics of optical pulses in waveguides with a large self-steepening parameter. Quantum Electron. 43(11), 1029–1036 (2013)

    Article  Google Scholar 

  44. Lee, J.H., van Howe, J., Xu, C., Liu, X.: Soliton self-frequency shift: experimental demonstrations and applications. IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008)

    Article  Google Scholar 

  45. Mani, B., Chitra, K., Sivasubramanian, A.: Study on fundamental and higher order soliton with and without third-order dispersion near zero dispersion point of single mode fiber. J. Nonlinear Opt. Phys. Mater. 23, 1450028-1–1450028-28 (2014)

    Article  Google Scholar 

  46. Stgeman, I.G., Segev, M.: Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518–1523 (1999)

    Article  Google Scholar 

  47. Roy, S., Bhadra, S.K., Saitoh, K., Koshiba, M., Agrawal, G.P.: Dynamics of Raman soliton during supercontinuum generation near the zerodispersion wavelength of optical fibers. Opt. Express 19(11), 10443–10455 (2011)

    Article  Google Scholar 

  48. Li, S.N., Li, H.P., Liao, J.K., Tang, X.G., Lu, R.G., Liu, Y.: Numerical investigation on frequency-shifting-induced spectral compression of femtosecond solitons in highly nonlinear fiber. Optik 124, 2281–2284 (2013)

    Article  Google Scholar 

  49. Chan, K.-T., Cao, W.-H.: Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering. Opt. Commun. 184, 463–474 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupeshwaran Mani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, B., Jawahar, A., Radha, S. et al. Combined influence of third-order dispersion, intra-pulse Raman scattering, and self-steepening effect on soliton temporal shifts in telecommunications. Photon Netw Commun 32, 73–88 (2016). https://doi.org/10.1007/s11107-015-0577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0577-0

Keywords

Navigation