Abstract
Existing methods for handling routing and dimensioning in dynamic WDM networks solve the two problems separately. The main drawback of this approach is that a global minimum cost solution cannot be guaranteed. Given that wavelengths are costly resources, determining the minimum network cost is of fundamental importance. We propose an approach which jointly solves the routing and dimensioning problems in optical burst switching (OBS) networks, guaranteeing a target blocking per connection. The method finds the set of routes and the number of wavelengths per network link that minimise the total network cost. To accomplish this, an integer linear programming problem is solved. The proposed method was applied to ring networks, where the optimal solution achieves a reduction in the network cost of 10–40% (for traffic loads <0.4, compared to solving both problems separately). In the case of mesh topologies, to reduce the computational complexity of the method, we applied a variation of it which achieves a local minimum. Even so, a reduction of 5–20% (for traffic loads <0.4) in the network cost was obtained. This ability to lower network cost could make the proposed method the best choice to date for dynamic network operators.
Similar content being viewed by others
References
Odlyzko A.: Data networks are lightly utilized, and will stay that way. Rev. Netw. Econ. 2(3), 210–237 (2003)
Agrawal G.: Fiber-Optic Communication Systems. 3rd edn. Wiley-Interscience, New York (2002)
Simmons J.M.: Network design in realistic “all-optical” backbone networks. IEEE Commun. Mag. 44(11), 88–94 (2006)
Post-deadline papers, in Proc. 33rd European Conference on Optical Communications (ECOC’07), Berlin, Germany (2007)
Baroni S., Bayvel P.: Wavelength requirements in arbitrarily connected wavelength-routed optical networks. IEEE/OSA J. Lightw. Technol. 5(2), 242–251 (1997)
Elmirghani J., Moutfah H.T.: All-optical wavelength conversion: technologies and applications in DWDM networks. IEEE Commun. Mag. 38(3), 86–92 (2000)
Assi C., Shami A., Ali M., Zhang Z., Liu X.: Impact of wavelength converters on the performance of optical networks. Opt. Netw. Mag. 3(2), 22–30 (2002)
Gerstel O., Raza H.: On the synergy between electrical and optical switching. IEEE Commun. Mag. 41(4), 98–104 (2003)
Sengupta S., Kumar V., Saha D.: Switched optical backbone for cost-effective scalable core IP networks. IEEE Commun. Mag. 41(6), 60–70 (2003)
Assi C., Shami A., Ali M.: Optical networking and real-time provisioning: an integrated vision for the next generation Internet. IEEE Netw. 15(4), 36–45 (2001)
O’Mahony M.J., Simeonidou D., Hunter D.K., Tzanakaki A.: The application of optical packet switching in future communications networks. IEEE Commun. Mag. 39(3), 128–135 (2001)
Qiao C., Yoo M.: Optical burst switching (OBS)—a new paradigm for an optical Internet. J. High Speed Netw. 8(1), 69–84 (1999)
Turner J.: Terabit burst switching. J. High Speed Netw. 8(1), 3–16 (1999)
Arakawa, S., Miyamoto, K., Murata, M., Miyahara, H.: Delay analyses of wavelength reservation methods for high speed burst transfer in photonic networks. In: Proc. APCC/OECC, vol. 1, Beijing, China, pp. 445–449 (1999)
Düser M., Bayvel P.: Analysis of a dynamically wavelength-routed optical burst switched network architecture. IEEE/OSA J. Lightw. Technol. 20(4), 574–585 (2002)
Zapata A., de Miguel I., Dueser M., Spencer J., Bayvel P., Breuer D., Hanik N., Gladish A.: Next generation 100-Gigabit Metro Ethernet (100GbME) using multiwavelength optical rings. IEEE/OSA J. Lightw. Technol. [Special issue on Metro & Access Networks] 22(11), 2420–2434 (2004)
Yates J., Rumsewicz M.P.: Wavelength converters in dynamically-reconfigurable WDM networks. IEEE Commun. Surv. 2(2), 2–15 (1999)
Zapata, A., Bayvel, P.: Dynamic vs. static wavelength-routed optical networks. IEEE/OSA J. Lightw. Technol., accepted (2008)
Li J., Mohan G., Chua K.C.: Dynamic load balancing in IP-over-WDM optical burst switching networks. Comput. Netw. 47(3), 393–408 (2005)
Späth J.: Dynamic routing and resource allocation in WDM transport networks. Comput. Netw. 32(5), 519–538 (2000)
Zang H., Jue J., Mukherjee B.: A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. Opt. Netw. Mag. 1(1), 47–60 (2000)
Gauger, C.M., Kohn, M., Zhang, J., Mukherjee, B.: Network performance of optical burst/packet switching: the impact of dimensioning, routing and contention resolution. In: Proc. ITG-Fachtgung Photonic Networks, Leipzig, Germany, pp. 1–8 (2005)
Van Parys, W., Van Caenegem, B., Demeester, P.: Reduction of blocking in arbitrary meshed WDM networks through a biased routing approach. In: Proc. OFC’98, San Jose, CA, USA, p. 94 (1998)
Teng J., Rouskas G.: Traffic engineering approach to path selection in optical burst switching networks. OSA J. Opt. Netw. 4, 759–777 (2005)
Brunato M., Battiti R., Salvadori E.: Dynamic load balancing in WDM networks. Opt. Netw. Mag. 4(5), 7–20 (2003)
Narula-Tam A., Modiano E.: Dynamic load balancing in WDM packet networks with and without wavelength constraints. IEEE J. Sel. Areas Commun. 18(10), 1972–1979 (2000)
Zapata, A., Bayvel, P.: Dynamic wavelength-routed optical burst switched networks: scalability analysis and comparison with static wavelength-routed optical networks. In: Proc. OFC2003, Atlanta, USA, vol. 1, pp. 212–213 (2003)
Teng, J., Rouskas, G.N.: Routing path optimization in optical burst switched networks. In: Proc. ONDM 2005, Milan, Italy, pp. 1–10 (2005)
Yu, J., Yamashita, I., Seikai, S., Kitayama, K.: Upgrade design of survivable wavelength-routed networks for increase of traffic loads. In: Proc. ONDM 2005, Milan, Italy, pp. 163–174 (2005)
Kozlovski, E., Düser, M., de Miguel, I., Bayvel, P.: Analysis of burst scheduling for dynamic wavelength assignment in optical burst switched networks. In: 14th Annual Meeting of the IEEE Lasers & Electro-Optics Society, LEOS 2001, San Diego, California, USA, paper TuD2 (2001)
Vallejos, R., Zapata, A., Aravena, M.: Fast and effective dimensioning algorithm for end to end optical burst switching networks with ON-OFF traffic model. Lecture Notes in Computer Science, vol. 4534, pp. 378–387. Springer, Berlin (2007)
Vallejos, R., Zapata, A., Albornoz, V.: Optimal routing for minimum wavelength requirements of end-to-end optical burst switching rings. Lecture Notes in Computer Science, vol. 4534, pp. 443–457. Springer, Berlin (2007)
Ramaswami R.: Optical networking technologies: what worked and what didn’t. IEEE Commun. Mag. 44(9), 132–139 (2006)
Ge A., Callegati F., Tamil L.: On optical burst switching and self similar traffic. IEEE Commun. Lett. 4(3), 98–100 (2000)
Hu, G., Dolzer, K., Gauger, C.: Does burst assembly really reduce the self-similarity? In: Proc. OFC2003, Atlanta, USA, pp. 124–125 (2003)
de Miguel, I., Düser, M., Bayvel, P.: Traffic load bounds for optical burst-switched networks with dynamic wavelength allocation. In: Proc. ONDM’01, Vienna, Austria, pp. 209–226 (2001)
Yu, X., Chen, Y., Qiao, C.: A study of traffic statistics of assembled burst traffic in optical burst switched networks. In: Proc. Opticomm’02, Boston, USA, pp. 149–159 (2002)
Ramaswami R., Sivarajan K.N.: Routing and wavelength assignment in all-optical networks. IEEE/ACM Trans. Netw. 3(5), 489–500 (1995)
Vallejos R., Zapata A., Aravena M.: Fast blocking probability evaluation of end-to-end optical burst switching networks with non-uniform ON-OFF input traffic model. J. Photon. Netw. Commun. 13(2), 217–226 (2007)
Rosberg, Z., Vu, H.L., Zukerman, M., White, J.: Blocking probabilities of optical burst switching networks based on reduced load fixed point approximations. In: Proc. IEEE INFOCOM’03, San Francisco, USA, vol. 3, pp. 2008–2018 (2003)
Fourer, R., Gay, D.M., Kernigham, B.W.: AMPL: A Modeling Language for Mathematical Programming, 2nd edn. Brooks/cole, Thompson Learning, Canada (2003)
Hunter D., Marcenac D.: Optimal mesh routing in four-fibre WDM rings. Electron. Lett. 34(8), 796–797 (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vallejos, R., Zapata-Beghelli, A., Albornoz, V. et al. Joint routing and dimensioning of optical burst switching networks. Photon Netw Commun 17, 266–276 (2009). https://doi.org/10.1007/s11107-008-0161-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11107-008-0161-y