Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Complementation in the Lattice of Locally Convex Topologies

  • Published:
Order Aims and scope Submit manuscript

Abstract

We find all locally convex homogeneous topologies on (ℝ, ≤ ) and determine which of these have locally convex complements. Among the locally convex topologies on an n-point totally ordered set, each has a locally convex complement and, for n ≥ 3, at least n − 2 of them have 2n − 1 locally convex complements. For any infinite cardinal κ, totally ordered spaces of cardinality κ which have exactly 1, exactly κ, and exactly 2κ locally convex complements are exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alas, O.T., Wilson, R.G.: Which topologies can have immediate successors in the lattice of T 1-topologies? Appl. Gen. Topol. 5(2), 231–242 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Anderson, B.A.: A class of topologies with T 1-complements. Fund. Math. 69, 267–277 (1970)

    MathSciNet  MATH  Google Scholar 

  3. Anderson, B.A.: Families of mutually complementary topologies. Proc. Amer. Math. Soc. 29(2), 362–368 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, B.A., Stewart, D.G.: T 1-complements of T 1 topologies. Proc. Amer. Math. Soc. 23(1), 77–81 (1969)

    MathSciNet  MATH  Google Scholar 

  5. Brown, J.I., Watson, S.: The number of complements of a topology on n points is at least 2n (except for some special cases). Discrete Math. 154, 27–39 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hartmanis, J.: On the lattice of topologies. Canad. J. Math. 10, 547–553 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  7. Knight, R.W., Gartside, P., McIntyre, D.W.: All finite distributive lattices occur as intervals between Hausdorff topologies. Order 14, 259–265 (1997–1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lamper, M.: Complements in the lattice of all topologies of topological groups. Arch Math. (Brno) 10(4), 221–230 (1974, 1975)

    MathSciNet  Google Scholar 

  9. Lihová, J.: On the lattice of convexly compatible topologies on a partially ordered set. Colloq. Math. Soc. János Bolya 33, 609–625 (1983)

    Google Scholar 

  10. Schnare, P.S.: Multiple complementation in the lattice of topologies. Fund. Math. 62, 53–59 (1968)

    MathSciNet  MATH  Google Scholar 

  11. Schnare, P.S.: The topological complementation theorem a la Zorn. Proc. Amer. Math. Soc. 35(1), 285–286 (1972)

    MathSciNet  MATH  Google Scholar 

  12. Shakhmatov, D., Tkachenko, M.: A compact Hausdorff topology that is a T 1-complement of itself. Fund. Math. 175(2), 163–173 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Steiner, A.K.: The lattice of topologies: structure and complementation. Trans. Amer. Math. Soc. 122, 379–398 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  14. Steiner, A.K.: Complementation in the lattice of T 1-topologies. Proc. Amer. Math. Soc. 17, 884–886 (1966)

    MathSciNet  MATH  Google Scholar 

  15. Steiner, A.K., Steiner, E.F.: Topologies with T 1-complements. Fund. Math. 61, 23–28 (1967)

    MathSciNet  MATH  Google Scholar 

  16. Steiner, A.K., Steiner, E.F.: A T 1-complement for the reals. Proc. Amer. Math. Soc. 19, 177–179 (1968)

    MathSciNet  MATH  Google Scholar 

  17. Van Rooij, A.C.M.: The lattice of all topologies is complemented. Canad. J. Math. 20, 805–807 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Watson, S.: The number of complements in the lattice of topologies on a fixed set. Topology Appl. 55(2), 101–125 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Uzcátegui, C.: Maximal complements in the lattice of pre-orders and topologies. Topology Appl. 132(2), 147–157 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Richmond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richmond, T.A. Complementation in the Lattice of Locally Convex Topologies. Order 30, 487–496 (2013). https://doi.org/10.1007/s11083-012-9257-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-012-9257-1

Keywords

Navigation