Abstract
In applications it is useful to know whether a topological preordered space is normally preordered. It is proved that every k ω -space equipped with a closed preorder is a normally preordered space. Furthermore, it is proved that second countable regularly preordered spaces are perfectly normally preordered and admit a countable utility representation.
Similar content being viewed by others
References
Akin, E.: The general topology of dynamical systems. Amer. Math. Soc., Providence (1993)
Aumann, R.J.: Utility theory without the completeness axiom. Econometrica 30, 445–462 (1962)
Bosi, G., Herden, G.: On a possible continuous analogue of the Szpilrajn theorem and its strengthening by Dushnik and Miller. Order 23, 271–296 (2006)
Bosi, G., Isler, R.: Continuous utility functions for nontotal preorders: a review of recent results, vol. 257. Preferences and Decisions of Studies in Fuzziness and Soft Computing, pp. 1–10. Springer-Verlag (2010)
Bourbaki, N.: Elements of Mathematics: General Topology I. Reading: Addison-Wesley Publishing (1966)
Bridges, D.S., Mehta, G.B.: Representations of preference orderings, vol. 442. Lectures Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin (1995)
Candeal-Haro, J.C., Induráin, E., Mehta, G.B.: Some utility theorems on inductive limits of preordered topological spaces. Bull. Aust. Math. Soc. 52, 235–246 (1995)
Engelking, R.: General Topology. Helderman Verlag, Berlin (1989)
Evren, O., Ok, E.A.: On the multi-utility representation of preference relations. https://files.nyu.edu/eo1/public/Papers-PDF/MU4.pdf (2008). Accessed 27 Aug 2011
Fletcher, P., Lindgren, W.: Quasi-uniform spaces, Lect. Notes in Pure and Appl. Math., vol. 77. Marcel Dekker, Inc., New York (1982)
Franklin, S.T., Smith Thomas, B.V.: A survey of k ω -spaces. Topol. Proc. 2, 111–124 (1977)
Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.: Continuous Lattices and Domains. Cambridge University Press (2003)
Herden, G.: On the existence of utility functions. Math. Soc. Sci. 17, 297–313 (1989)
Herden, G., Pallack, A.: On the continuous analogue of the Szpilrajn theorem I. Math. Soc. Sci. 43, 115–134 (2002)
Kelley, J.L.: General Topology. Springer-Verlag, New York (1955)
Kopperman, R. and Lawson, J.: Bitopological and topological ordered k-spaces. Topol. Its Appl. 146–147, 385–396 (2005)
Künzi, H.-P.A.: Completely regular ordered spaces. Order 7, 283–293 (1990)
Künzi, H.-P.A., Watson, S.: A metrizable completely regular ordered space. Comment. Math. Univ. Carol. 35, 773–778 (1994)
Lawson, J., Madison, B.: On congruences of cones. Math. Z. 120, 18–24 (1971)
Levin, V.L.: A continuous utility theorem for closed preorders on a σ-compact metrizable space. Sov. Math. Dokl. 28, 715–718 (1983)
Levin, V. L.: Measurable utility theorem for closed and lexicographic preference relations. Sov. Math. Dokl. 27, 639–643 (1983)
Levin, V.L., Milyutin, A.A.: The problem of mass transfer with a discontinuous cost function and a mass statement of the duality problem for convex extremal problems. Russ. Math. Surv. 34, 1–78 (1979)
McCallion, T.: Compactifications of ordered topological spaces. Proc. Camb. Philol. Soc. 71, 463–473 (1972)
McCartan, S.D.: Separation axioms for topological ordered spaces. Proc. Camb. Philol. Soc. 64, 965–973 (1968)
Mehta, G.: Some general theorems on the existence of order-preserving functions. Math. Soc. Sci. 15, 135–143 (1988)
Milnor, J.: Construction of universal bundles, I. Ann. Math. 63, 272–284 (1956)
Minguzzi, E.: Time functions as utilities. Commun. Math. Phys. 298, 855–868 (2010)
Minguzzi, E.: Normally preordered spaces and utilities. arXiv:1106.4457v2 (2011)
Morita, K.: On the decomposition spaces of locally compact spaces. Proc. Jpn. Acad. 32, 544–548 (1956)
Nachbin, L.: Topology and Order. D. Van Nostrand Company, Inc., Princeton (1965)
Ok, E.A.: Utility representation of an incomplete preference relation. J. Econ. Theory 104, 429–449 (2002)
Priestley, H.A.: Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc. 24, 507–530 (1972)
Willard, S.: General topology. Reading: Addison-Wesley Publishing Company (1970)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Minguzzi, E. Normally Preordered Spaces and Utilities. Order 30, 137–150 (2013). https://doi.org/10.1007/s11083-011-9230-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11083-011-9230-4