Abstract
A lattice L is spatial if every element of L is a join of completely join-irreducible elements of L (points), and strongly spatial if it is spatial and the minimal coverings of completely join-irreducible elements are well-behaved. Herrmann et al. proved in 1994 that every modular lattice can be embedded, within its variety, into an algebraic and spatial lattice. We extend this result to n-distributive lattices, for fixed n. We deduce that the variety of all n-distributive lattices is generated by its finite members, thus it has a decidable word problem for free lattices. This solves two problems stated by Huhn in 1985. We prove that every modular (resp., n-distributive) lattice embeds within its variety into some strongly spatial lattice. Every lattice which is either algebraic modular spatial or bi-algebraic is strongly spatial. We also construct a lattice that cannot be embedded, within its variety, into any algebraic and spatial lattice. This lattice has a least and a largest element, and it generates a locally finite variety of join-semidistributive lattices.
Similar content being viewed by others
References
Cozzens, J.H., Faith, C.: Simple Nœtherian Rings: Cambridge Tracts in Mathematics, no. 69. Cambridge University Press, Cambridge, xvii+135 pp. ISBN: 0 521 20734 7 (1975)
Crawley, P., Dilworth, R.P.: Algebraic Theory of Lattices. Prentice-Hall, New Jersey, vi+201 pp. ISBN: 0-13-022269-0 (1973)
Freese, R.: The variety of modular lattices is not generated by its finite members. Trans. Am. Math. Soc. 255, 277–300 (1979)
Freese, R.: Free modular lattices. Trans. Am. Math. Soc. 261(1), 81–91 (1980)
Frink, O. Jr.: Complemented modular lattices and projective spaces of infinite dimension. Trans. Am. Math. Soc. 60, 452–467 (1946)
Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous lattices and domains. In: Encyclopedia of Mathematics and its Applications, vol. 93. Cambridge University Press, Cambridge, xxxvi+591 pp. ISBN: 0-521-80338-1 (2003)
Goodearl, K.R.: Von Neumann Regular Rings, 2nd edn. Robert E. Krieger, Malabar, xviii+412 pp. ISBN: 0-89464-632-X (1991)
Goodearl, K.R., Menal, P., Moncasi, J.: Free and residually artinian regular rings. J. Algebra 156(2), 407–432 (1993)
Gorbunov, V.A.: Algebraic Theory of Quasivarieties. (Algebraicheskaya Teoriya Kvazimnogoobrazij) (Russian) Sibirskaya Shkola Algebry i Logiki. 5. Novosibirsk: Nauchnaya Kniga, xii+368 pp. (1999). English translation by Plenum, New York, xii+298 pp. ISBN: 0-306-11063-6 (1998)
Grätzer, G.: General Lattice Theory, 2nd edn. New appendices by the author with B.A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H.A. Priestley, H. Rose, E.T. Schmidt, S.E. Schmidt, F. Wehrung, and R. Wille. Birkhäuser, Basel, xx+663 pp. ISBN: 3-7643-5239-6; 3-7643-6996-5 (1998)
Herrmann, C.: On the equational theory of submodule lattices. In: Proceedings of the University of Houston Lattice Theory Conference (Houston, Tex., 1973), pp. 105–118. Dept. Math., Univ. Houston, Houston, Texas (1973)
Herrmann, C., Huhn, A.P.: Zum Wortproblem für freie Untermodulverbände. Arch. Math. (Basel) 26(5), 449–453 (1975)
Herrmann, C.: On the word problem for the modular lattice with four free generators. Math. Ann. 265(4), 513–527 (1983)
Herrmann, C., Pickering, D., Roddy, M.: A geometric description of modular lattices. Algebra Univers. 31(3), 365–396 (1994)
Herrmann, C., Semenova, M.V.: Existence varieties of regular rings and complemented modular lattices. J. Algebra 314(1), 235–251 (2007)
Huhn, A.P.: On nonmodular n-distributive lattices: the decision problem for identities in finite n-distributive lattices. Acta Sci. Math. (Szeged) 48(1–4), 215–219 (1985)
Huhn, A.P.: On nonmodular n-distributive lattices. I. Lattices of convex sets. Acta Sci. Math. (Szeged) 52(1–2), 35–45 (1988)
Hutchinson, G., Czédli, G.: A test for identities satisfied in lattices of submodules. Algebra Univers. 8(3), 269–309 (1978)
Jipsen, P., Rose, H.: Varieties of lattices. In: Lecture Notes in Mathematics 1533. Springer, Berlin, x+162 pp. ISBN: 3-540-56314-8; 0-387-56314-8 (1992). Out of print, available online at http://www1.chapman.edu/˜jipsen/JipsenRoseVoL.html
Jónsson, B.: Modular lattices and Desargues’ theorem. Math. Scand. 2, 295–314 (1954)
Jónsson, B., Rival, I.: Lattice varieties covering the smallest nonmodular variety. Pac. J. Math. 82(2), 463–478 (1979)
Maeda, F.: Kontinuierliche Geometrien. (German) Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd. 95. Springer, Berlin, x+244 pp. ISBN: 978-1-114-52944-1 (1958)
McKinsey, J.C.C.: The decision problem for some classes of sentences without quantifiers. J. Symb. Log. 8, 61–76 (1943)
Nation, J.B.: An approach to lattice varieties of finite height. Algebra Univers. 27(4), 521–543 (1990)
Semenova, M.V., Wehrung, F.: Sublattices of lattices of order-convex sets. II. Posets of finite length. Int. J. Algebra Comput. 13(5), 543–564 (2003)
Semenova, M.V., Wehrung, F.: Sublattices of lattices of order-convex sets, I. The main representation theorem. J. Algebra 277, 825–860 (2004)
Semenova, M.V., Wehrung, F.: Sublattices of lattices of order-convex sets, III. The case of totally ordered sets. Int. J. Algebra Comput. 14(3), 357–387 (2004)
Semenova, M.V., Zamojska-Dzienio, A.: On lattices embeddable into lattices of order-convex sets. Case of trees. Int. J. Algebra Comput. 17(8), 1667–1712 (2007)
Wehrung, F.: Sublattices of complete lattices with continuity conditions. Algebra Univers. 53(2–3), 149–173 (2005)
Author information
Authors and Affiliations
Corresponding author
Additional information
Both authors were partially supported by the PEPS project TRECOLOCOCO.
Rights and permissions
About this article
Cite this article
Santocanale, L., Wehrung, F. Varieties of Lattices with Geometric Descriptions. Order 30, 13–38 (2013). https://doi.org/10.1007/s11083-011-9225-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11083-011-9225-1
Keywords
- Lattice
- Complete
- Algebraic
- Dually algebraic
- Ideal
- Filter
- Upper continuous
- Lower continuous
- Modular
- Join-semidistributive
- Point
- Seed
- Spatial
- Strongly spatial
- Cover
- Irredundant cover
- Tight cover
- Minimal cover