Abstract
In this paper we provide a Heine–Borel type characterization for 0-compactness in approach spaces (Lowen 1997). Since this requires making use of the so-called regular function frame the most natural setting to develop this in is approach frames (Banaschewski 1999; Banaschewski et al., Acta Math Hung 115(3):183–196, 2007, Topology Appl 153:3059–3070, 2006). We then go on to characterize Hausdorffness for approach frames which allows us to study some fundamental properties of compact Hausdorff approach frames.
Similar content being viewed by others
References
Banaschewski, B.: A Sobering Suggestion. Seminar Notes, Cape Town (1999)
Banaschewski, B.: Prime elements from prime ideals. Order 2(2), 211–213 (1985)
Banaschewski, B., Lowen, R., Van Olmen, C.: Regularity in approach theory. Acta Math. Hung. 115(3), 183–196 (2007)
Banaschewski, B., Lowen, R., Van Olmen, C.: Sober approach spaces. Topology Appl. 153, 3059–3070 (2006)
Clementino, M.M., Giuli, E., Tholen, W.: A functional approach to topology. In: Pedicchio, M.C., Tholen, W. (eds.) Categorical Foundations. Cambridge University Press, Cambridge (2003)
Colebunders, E., Lowen, R., Wuyts, P.: A Kuratowski–Mrówka theorem in approach theory. Topology Appl. 153, 756–766 (2005)
Dowker, C.H., Strauss, D.: Products and sums in the category of frames. In: Binz, E. (ed.) Categorical Topology, Singer Lecture Notes in Mathematics, vol. 540, pp. 208–219. Springer, Berlin (1976)
Isbell, J.R.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)
Johnstone, P.T.: Stone spaces. In: Cambridge Studies in Advanced Math., no. 3. Cambridge, Cambridge University Press (1982)
Lowen, R.: Approach spaces: a common supercategory of TOP and MET. Math. Nachr. 141, 183–226 (1989)
Lowen, R.: Approach spaces: the missing link in the topology–uniformity–metric triad. In: Oxford Mathematical Monographs. Oxford, Oxford University Press (1997)
Lowen, R., Sioen, M.: A note on separation in Ap. Appl. Gen. Topol. 4(2), 475–486 (2003)
Pultr, A.: Frames. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 3, chapter 4A, pp. 791–858. North Holland, Amsterdam (2003)
Van Olmen, C.: Quotient Structures in Approach Frames (forthcoming)
Van Olmen, C., Verwulgen, S.: Representing Approach Frames as the Eilenberg–Moore Algebras of Approach Spaces (submitted for publication)
Vickers, S.: Topology via logic. In: Cambridge Tracts in Theor. Comp. Sci., vol. 5. Cambridge University Press, Cambridge (1996)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Banaschewski, B., Lowen, R. & Van Olmen, C. Compact Hausdorff Approach Frames. Order 29, 105–118 (2012). https://doi.org/10.1007/s11083-011-9200-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11083-011-9200-x