Abstract
We study relations among the set of infinitesimal elements of pseudo MV-algebras and the problem of existence of states on them. This is important because in contrast to MV-algebras, it can happen that a pseudo MV-algebra has no states, so no probabilistic evaluation of events on it is possible. We introduce two kinds of radicals, and we deal with their relation. In some cases, they are completely different, which is not the case for MV-algebras. We give many interesting examples describing different situations, and we deal in more details with a subvariety of symmetric pseudo MV-algebras, where both complements coincide.
Similar content being viewed by others
References
Baer, R.: Free sums of groups and their generalizations. An analysis of the associative law, Amer. J. Math. 41 (1949), 706–742.
Chang, C. C.: Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490.
Cignoli, R., D'Ottaviano, I. M. L. and Mundici, D.: Algebraic Foundations of Many-Valued Reasoning, Kluwer Acad. Publ., 2000.
Darnel, M. R.: Theory of Lattice-Ordered Groups, Marcel Dekker, Inc., New York, 1995.
Di Nola, A., Georgescu, G. and Iorgulescu, A., Pseudo-BL-algebras, I, II, Multi Valued Logic 8 (2002), 673–714, 717–750.
Dvurečenskij, A.: On partial addition in pseudo MV-algebras, in I. Smeureanu et al. (eds), Proc. Fourth Inter. Symp. on Econ. Inform. (May 6–9, 1999, Bucharest), INFOREC Printing House, Bucharest, 1999, pp. 952–960.
Dvurečenskij, A.: States on pseudo MV-algebras, Studia Logica 68 (2001), 301–327.
Dvurečenskij, A.: Pseudo MV-algebras are intervals in ℓ-groups, J. Austral. Math. Soc. 72 (2002), 427–445.
Dvurečenskij, A.: States on unital partially-ordered groups, Kybernetika 38 (2002), 297–318.
Dvurečenskij, A. and Pulmannová, S.: New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht, Ister Science, Bratislava, 2000.
Dvurečenskij, A. and Vetterlein, T.: Pseudoeffect algebras. I. Basic properties, Internat. J. Theor. Phys. 40 (2001), 685–701.
Dvurečenskij, A. and Vetterlein, T.: Pseudoeffect algebras. II. Group representations, Internat. J. Theor. Phys. 40 (2001), 703–726.
Dvurečenskij, A. and Kalmbach, G.: States on pseudo MV-algebras and the hull-kernel topology, Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 131–146.
Fuchs, L.: Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963.
Georgescu, G. and Iorgulescu, A.: Pseudo-MV algebras, Multi Valued Logic 6 (2001), 95–135.
Glass, A. M. W.: Partially Ordered Groups, World Scientific, Singapore, 1999.
Goodearl, K. R.: Partially Ordered Abelian Groups with Interpolation, Math. Surveys Monographs 20, Amer. Math. Soc., Providence, RI, 1986.
Hájek, P.: Observations on noncommutative fuzzy logic, Soft Computing 8 (2003), 38–43.
Holland, C.: The lattice-ordered group of automorphisms of an ordered set, Michigan Math. J. 10 (1963), 399–408.
Kôpka, F. and Chovanec, F.: D-posets, Math. Slovaca 44 (1994), 21–34.
Mundici, D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15–63.
Mundici, D.: Averaging the truth-value in Łukasiewicz logic, Studia Logica 55 (1995), 113–127.
Rachůnek, J.: A noncommutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255–273.
Author information
Authors and Affiliations
Corresponding author
Additional information
Mathematics Subject Classifications (2000)
06D35, 03B50, 03G12.
Rights and permissions
About this article
Cite this article
di Nola, A., Dvurečenskij, A. & Jakubík, J. Good and Bad Infinitesimals, and States on Pseudo MV-algebras. Order 21, 293–314 (2004). https://doi.org/10.1007/s11083-005-0941-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11083-005-0941-2