Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Good and Bad Infinitesimals, and States on Pseudo MV-algebras

  • Published:
Order Aims and scope Submit manuscript

Abstract

We study relations among the set of infinitesimal elements of pseudo MV-algebras and the problem of existence of states on them. This is important because in contrast to MV-algebras, it can happen that a pseudo MV-algebra has no states, so no probabilistic evaluation of events on it is possible. We introduce two kinds of radicals, and we deal with their relation. In some cases, they are completely different, which is not the case for MV-algebras. We give many interesting examples describing different situations, and we deal in more details with a subvariety of symmetric pseudo MV-algebras, where both complements coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baer, R.: Free sums of groups and their generalizations. An analysis of the associative law, Amer. J. Math. 41 (1949), 706–742.

    Google Scholar 

  2. Chang, C. C.: Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490.

    Google Scholar 

  3. Cignoli, R., D'Ottaviano, I. M. L. and Mundici, D.: Algebraic Foundations of Many-Valued Reasoning, Kluwer Acad. Publ., 2000.

  4. Darnel, M. R.: Theory of Lattice-Ordered Groups, Marcel Dekker, Inc., New York, 1995.

    Google Scholar 

  5. Di Nola, A., Georgescu, G. and Iorgulescu, A., Pseudo-BL-algebras, I, II, Multi Valued Logic 8 (2002), 673–714, 717–750.

    Google Scholar 

  6. Dvurečenskij, A.: On partial addition in pseudo MV-algebras, in I. Smeureanu et al. (eds), Proc. Fourth Inter. Symp. on Econ. Inform. (May 6–9, 1999, Bucharest), INFOREC Printing House, Bucharest, 1999, pp. 952–960.

    Google Scholar 

  7. Dvurečenskij, A.: States on pseudo MV-algebras, Studia Logica 68 (2001), 301–327.

    Article  Google Scholar 

  8. Dvurečenskij, A.: Pseudo MV-algebras are intervals in ℓ-groups, J. Austral. Math. Soc. 72 (2002), 427–445.

    Google Scholar 

  9. Dvurečenskij, A.: States on unital partially-ordered groups, Kybernetika 38 (2002), 297–318.

    Google Scholar 

  10. Dvurečenskij, A. and Pulmannová, S.: New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht, Ister Science, Bratislava, 2000.

  11. Dvurečenskij, A. and Vetterlein, T.: Pseudoeffect algebras. I. Basic properties, Internat. J. Theor. Phys. 40 (2001), 685–701.

    Article  Google Scholar 

  12. Dvurečenskij, A. and Vetterlein, T.: Pseudoeffect algebras. II. Group representations, Internat. J. Theor. Phys. 40 (2001), 703–726.

    Article  Google Scholar 

  13. Dvurečenskij, A. and Kalmbach, G.: States on pseudo MV-algebras and the hull-kernel topology, Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 131–146.

    Google Scholar 

  14. Fuchs, L.: Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963.

    Google Scholar 

  15. Georgescu, G. and Iorgulescu, A.: Pseudo-MV algebras, Multi Valued Logic 6 (2001), 95–135.

    Google Scholar 

  16. Glass, A. M. W.: Partially Ordered Groups, World Scientific, Singapore, 1999.

    Google Scholar 

  17. Goodearl, K. R.: Partially Ordered Abelian Groups with Interpolation, Math. Surveys Monographs 20, Amer. Math. Soc., Providence, RI, 1986.

    Google Scholar 

  18. Hájek, P.: Observations on noncommutative fuzzy logic, Soft Computing 8 (2003), 38–43.

    Google Scholar 

  19. Holland, C.: The lattice-ordered group of automorphisms of an ordered set, Michigan Math. J. 10 (1963), 399–408.

    Article  Google Scholar 

  20. Kôpka, F. and Chovanec, F.: D-posets, Math. Slovaca 44 (1994), 21–34.

    Google Scholar 

  21. Mundici, D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15–63.

    Article  Google Scholar 

  22. Mundici, D.: Averaging the truth-value in Łukasiewicz logic, Studia Logica 55 (1995), 113–127.

    Article  Google Scholar 

  23. Rachůnek, J.: A noncommutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255–273.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio di Nola.

Additional information

Mathematics Subject Classifications (2000)

06D35, 03B50, 03G12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

di Nola, A., Dvurečenskij, A. & Jakubík, J. Good and Bad Infinitesimals, and States on Pseudo MV-algebras. Order 21, 293–314 (2004). https://doi.org/10.1007/s11083-005-0941-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-005-0941-2

Keywords

Navigation