Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Detection spectrum optimization of stealth aircraft targets from a space-based infrared platform

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Advances in infrared detection techniques require novel spectrum dynamic-modification strategies capable of sensing unprecedentedly low target radiant intensities. a conventional fixed-spectrum detection system cannot satisfy the effective detection of stealth aircraft targets due to complex Earth background clutter and atmospheric attenuation. Therefore, a detection method that can highlight aircraft targets is urgently needed to enhance stealth aircraft detectability. In this research, a spectrum set consisting of different bandwidths associated with a central wavelength is established. Furthermore, a signal-to-noise ratio of the stealth aircraft is computed using the established spectrum set. Finally, the optimal spectrum is selected according to the maximal signal-to-noise ratio from the spectrum set. Our numerical experiments and simulations further demonstrate that the proposed methodology can substantially strengthen the detection performance of stealth aircraft compared with traditional fixed-spectrum detection systems. This work on detection spectrum optimization paves the way to stealth aircraft detection and opens new vistas in the field of target detection technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baranwal, N., Mahulikar, S.P.: IR signature study of aircraft engine for variation in nozzle exit area. Infrared Phys. Technol. 74, 21–27 (2015)

    Article  ADS  Google Scholar 

  • Cha, J.H., Kim, T., Bae, J.Y., Kim, T.: Variation of supersonic aircraft skin temperature under different Mach number and structure. Korea Inst. Mil. Sci. Technol. 17(4), 463–470 (2014)

    Article  Google Scholar 

  • Chen, H., Zhang, H., Xi, Z., Zheng, Q.: Modeling of the turbofan with an ejector nozzle based on infrared prediction. Appl. Therm. Eng. 159, 113910 (2019)

    Article  Google Scholar 

  • Cheng, W., Wang, Z., Zhou, L., Shi, J., Sun, X.: Infrared signature of serpentine nozzle with engine swirl. Aerosp. Sci. Technol. 86, 794–804 (2019)

    Article  Google Scholar 

  • Gu, B., Wook, B., Jegal, S.H., Choi, S.M., Kim, W.C.: Infrared signature characteristic of a microturbine engine exhaust plume. Infrared Phys. Technol. 86, 11–22 (2017)

    Article  ADS  Google Scholar 

  • Holst, G. C.: Point source. In: Electro-Optical Imaging System Performance, 6th ed. (SPIE 2017)

  • Hu, H., Li, Y., Wei, Z., Zheng, Y.: Optimization of the MSMGWB model used for the calculation of infrared remote sensing signals from hot combustion gases of hydrocarbon fuel. Infrared Phys. Technol. 107, 103286 (2020)

    Article  Google Scholar 

  • Johansson, M., Dalenbring, M.: Calculation of IR signatures from airborne vehicles. Proc. SPIE 6228, 622813 (2006)

    Article  Google Scholar 

  • Kou, T., Zhou, Z., Liu, H., Yang, Y., Lu, C.: Multispectral radiation envelope characteristics of aerial infrared targets. Opt. Laser Technol. 103, 251–259 (2018a)

    Article  ADS  Google Scholar 

  • Kou, T., Zhou, Z., Liu, H., Yang, Y.: Multi-band composite detection and recognition of aerial infrared point targets. Infrared Phys. Technol. 94, 102–109 (2018b)

    Article  ADS  Google Scholar 

  • Lee, J.H., Chae, J.H., Ha, N.K., Kim, D.G., Jang, H.S.: Efficient prediction of aerodynamic heating of a high speed aircraft for IR signature analysis. J. Korean Soc. Aeronaut. Space Sci. 47(11), 769–778 (2019)

    ADS  Google Scholar 

  • Li, N., Lv, Z., Wang, S., Gong, G., Ren, L.: A real-time infrared radiation imaging simulation method of aircraft skin with aerodynamic heating effect. Infrared Phys. Technol. 71, 533–541 (2015)

    Article  Google Scholar 

  • Li, N., Lv, Z., Huai, W., Gong, G.: A simulation method of aircraft plumes for real-time imaging. Infrared Phys. Technol. 77, 153–161 (2016)

    Article  ADS  Google Scholar 

  • Mahulikar, S.P., Sane, S., Gaitonde, U., Marathe, A.: Numerical studies of infrared signature levels of complete aircraft. Aeronaut. J. 105(1046), 185–192 (2001)

    Article  Google Scholar 

  • Mahulikar, S.P., Rao, G.A., Sane, S.K., Marathe, A.G.: Aircraft plume infrared signature in nonafterburning mode. J. Thermophys. Heat Transf. 19(3), 413–415 (2005)

    Article  Google Scholar 

  • Mahulikar, S.P., Sonawane, H.R., Rao, G.A.: Infrared signature studies of aerospace vehicles. Prog. Aerosp. Sci. 43(7), 218–245 (2007)

    Article  Google Scholar 

  • Mahulikar, S.P., Potnuru, S.K., Rao, G.A.: Study of sunshine, skyshine, and Earthshine for aircraft infrared detection. J. Opt. A-Pure. Appl. Op. 11(4), 45703–45712 (2009)

    Article  Google Scholar 

  • Nam, J., Chang, I., Lee, Y., Kim, J., Cho, H.H.: Effect of flight altitude on minimal infrared signature of combat aircraft. J. Comput. Struct. Eng. Inst. Korea 33(6), 375–382 (2020)

    Article  Google Scholar 

  • Pan, X., Wang, X., Wang, R., Wang, L.: Infrared radiation and stealth characteristics prediction for supersonic aircraft with uncertainty. Infrared Phys. Technol. 73, 238–250 (2015)

    Article  ADS  Google Scholar 

  • Rao, G.A., Mahulikar., S.P.: Aircraft powerplant and plume infrared signature modelling and analysis. AIAA J. 2005–221 (2005)

  • Retief, S.J.P.: Aircraft plume infrared radiance inversion and subsequent simulation model. Proc. SPIE 8543, 85430P (2012)

    Article  Google Scholar 

  • Retief, S.J.P., Dreyer, M.M., Brink, C.: Infrared recordings for characterizing an aircraft plume. Proc. SPIE 9257, 92570C (2014)

    Article  ADS  Google Scholar 

  • Sircilli, F., Retief, S.J.P., Magalhaes, L.B., Ribeiro, L.R., Zanandrea, A., Brink, C., Nascimento, M., Dreyer, M.M.: Measurements of a micro gas turbine plume and data reduction for the purpose of infrared signature modeling. IEEE. Trans. Aerosp. Electron. Syst. 51(4), 3282–3293 (2015)

    Article  ADS  Google Scholar 

  • Sun, W., Wang, S.B.: Study on infrared images simulation of fighter aircraft. In: International Conference on Control, Automation and Systems (ICCAS), pp. 1703–1708 (2019)

  • Veiga, I.V.: IR signature modelling at BAE systems ATC. In: International target and background modeling and simulation workshop, ONERA, pp. 1–26 (2011)

  • Wang, Y., Xie, F., Wang, J.: Short-wave infrared signature and detection of aircraft in flight based on space-borne hyperspectral imagery. Chin. Opt. Lett. 14(12), 132–135 (2016)

    Google Scholar 

  • Willers, C.J., Willers, M.S., Waal, A.: Aircraft vulnerability analysis by modeling and simulation. Proc. SPIE 9251, 92510M (2014)

    Article  ADS  Google Scholar 

  • Wu, S., Zhang, K., Niu, S., Yan, J.: Anti-interference aircraft-tracking method in infrared imagery. Sensors. 19, 1289 (2019)

    Article  ADS  Google Scholar 

  • Yang, T., Zhou, F., Xing, M.: A method for calculating the energy concentration degree of point target detection system. Spacecr. Recovery Remote Sens. 38(2), 41–47 (2017)

    Article  Google Scholar 

  • Yuan, H., Wang, X.R., Guo, B.T., Ren, D., Zhang, W.G., Li, K.: Performance analysis of the infrared imaging system for aircraft plume detection from geostationary orbit. Appl. Opt. 58(7), 1691–1698 (2019a)

    Article  ADS  Google Scholar 

  • Yuan, H., Wang, X., Yuan, Y., Li, K., Zhang, C., Zhao, Z.: Space-based full chain multi-spectral imaging features accurate prediction and analysis for aircraft plume under sea/cloud background. Opt. Express 27(18), 26027–26043 (2019b)

    Article  ADS  Google Scholar 

  • Zhang, T., Xu, Z., Wang, Y., Sun, F., Zhang, H.: Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine. Infrared Phys. Technol. 102, 102990 (2019)

    Article  Google Scholar 

  • Zheng, T., Dong, W., Wang, Z.Y., Yi, X.S., Zhao, Y., Yuan, Z.D., Zhao, Y.L.: Investigation of infrared spectral emissivity of low emittance functional coating artefacts. Infrared Phys. Technol. 110, 103454 (2020)

    Article  Google Scholar 

  • Zhou, Y., Wang, Q., Li, T., Hu, H.: A numerical simulation method for aircraft infrared imaging. Infrared Phys. Technol. 83, 68–77 (2017a)

    Article  ADS  Google Scholar 

  • Zhou, Y., Wang, Q., Li, T.: A new model to simulate infrared radiation from an aircraft exhaust system. Chin. J. Aeronaut. 30(2), 651–662 (2017b)

    Article  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (Grant No. 61975222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, X., Yu, S., Su, X. et al. Detection spectrum optimization of stealth aircraft targets from a space-based infrared platform. Opt Quant Electron 54, 151 (2022). https://doi.org/10.1007/s11082-021-03451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03451-4

Keywords

Navigation