Abstract
This article presents an instantaneous-baseline multi-indicial nonlinear ultrasonic resonance spectral correlation technique for fatigue crack detection and quantification. A reduced-order nonlinear oscillator model is tailored to illuminate the contact acoustic nonlinearity (CAN) and the nonlinear resonance phenomena. The analytical formulation considers the rough surface condition of the fatigue cracks, with a crack open–close transitional range for the effective modeling of the variable-stiffness nonlinear mechanism. Multiple damage indices (DIs) associated with the degree of nonlinearity of the interrogated structures are then proposed by correlating the ultrasonic resonance spectra. Three perspectives of the nonlinear resonance phenomena are investigated to detect and monitor the fatigue crack growth: (1) time-history dependence, which evolves different resonance states depending on the loading history; (2) amplitude dependence, which renders significantly different nonlinear responses under various levels of excitation amplitudes; (3) breakage of superposition, which effectively distinguishes nonlinear resonant responses from the linear counterparts. These DIs are established using instantaneous baselines, facilitating the fatigue damage monitoring without the prior knowledge of a pristine structure. Fatigue tests on a thin aluminum plate with a rivet hole are conducted to induce fatigue cracks in the specimen. The experimental results demonstrate that the proposed technique shows remarkable sensitivity to the nucleation and growth of the fatigue cracks. This paper differs from the existing literature on nonlinear resonance-based techniques in that it focuses on the resonance phenomenon aroused by the contact acoustic nonlinearity from localized fatigue cracks, rather than the diffused material nonlinearity. The novelty of the paper resides in the establishment of an instantaneous baseline technique utilizing the nonlinear resonance features without the need of referring to a pristine baseline situation. The paper finishes with discussion, concluding remarks, and suggestions for future work.
Similar content being viewed by others
References
Croxford, A.J., Wilcox, P.D., Drinkwater, B.W., Nagy, P.B.: The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J. Acoust. Soc. Am. 126(5), 117–122 (2009). https://doi.org/10.1121/1.3231451
Su, Z., Zhou, C., Hong, M., Cheng, L., Wang, Q., Qing, X.: Acousto-ultrasonics-based fatigue damage characterization: linear versus nonlinear signal features. Mech. Syst. Signal Process. 45(1), 225–239 (2014). https://doi.org/10.1016/j.ymssp.2013.10.017
Zhang, M., Shen, Y., Xiao, L., Qu, W.: Application of subharmonic resonance for the detection of bolted joint looseness. Nonlinear Dyn. 88(3), 1643–1653 (2017). https://doi.org/10.1007/s11071-017-3336-1
Zhou, C., Hong, M., Su, Z., Wang, Q., Cheng, L.: Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network. Smart Mater. Struct. 22(1), 015018 (2013). https://doi.org/10.1088/0964-1726/22/1/015018
Yang, Y., Ng, C.-T., Kotousov, A., Sohn, H., Lim, H.J.: Second harmonic generation at fatigue cracks by low-frequency Lamb waves: experimental and numerical studies. Mech. Syst. Signal Process. 99, 760–773 (2018). https://doi.org/10.1016/j.ymssp.2017.07.011
Ohara, Y., Mihara, T., Yamanaka, K.: Effect of adhesion force between crack planes on subharmonic and DC responses in nonlinear ultrasound. Ultrasonics 44(2), 194–199 (2006). https://doi.org/10.1016/j.ultras.2005.10.006
Lim, H.J., Sohn, H., DeSimio, M.P., Brown, K.: Reference-free fatigue crack detection using nonlinear ultrasonic modulation under various temperature and loading conditions. Mech. Syst. Signal Process. 45(2), 468–478 (2014). https://doi.org/10.1016/j.ymssp.2013.12.001
Sohn, H., Lim, H.J., DeSimio, M.P., Brown, K., Derriso, M.: Nonlinear ultrasonic wave modulation for online fatigue crack detection. J. Sound Vib. 333(5), 1473–1484 (2014). https://doi.org/10.1016/j.jsv.2013.10.032
Hogg, S.M., Anderson, B.E., Le Bas, P.-Y., Remillieux, M.C.: Nonlinear resonant ultrasound spectroscopy of stress corrosion cracking in stainless steel rods. NDT E Int. 102, 194–198 (2019). https://doi.org/10.1016/j.ndteint.2018.12.007
Meo, M., Polimeno, U., Zumpano, G.: Detecting damage in composite material using nonlinear elastic wave spectroscopy methods. Appl. Compos. Mater. 15(3), 115–126 (2008). https://doi.org/10.1007/s10443-008-9061-7
Klepka, A., Staszewski, W.J., Jenal, R.B., Szwedo, M., Iwaniec, J., Uhl, T.: Nonlinear acoustics for fatigue crack detection—experimental investigations of vibro-acoustic wave modulations. Struct. Health Monit. Int. J. 11(2), 197–211 (2011). https://doi.org/10.1177/1475921711414236
Iwaniec, J., Uhl, T., Staszewski, W.J., Klepka, A.: Detection of changes in cracked aluminium plate determinism by recurrence analysis. Nonlinear Dyn. 70(1), 125–140 (2012). https://doi.org/10.1007/s11071-012-0436-9
Lim, H.J., Sohn, H.: Online fatigue crack prognosis using nonlinear ultrasonic modulation. Struct. Health Monit. 18(5–6), 1889–1902 (2019). https://doi.org/10.1177/1475921719828271
Liu, P., Sohn, H.: Damage detection using sideband peak count in spectral correlation domain. J. Sound Vib. 411, 20–33 (2017). https://doi.org/10.1016/j.jsv.2017.08.049
Amerini, F., Meo, M.: Structural health monitoring of bolted joints using linear and nonlinear acoustic/ultrasound methods. Struct. Health Monit. Int. J. 10(6), 659–672 (2011). https://doi.org/10.1177/1475921710395810
Chrysochoidis, N.A., Barouni, A.K., Saravanos, D.A.: Delamination detection in composites using wave modulation spectroscopy with a novel active nonlinear acoustoultrasonic piezoelectric sensor. J. Intell. Mater. Syst. Struct. 22(18), 2193–2206 (2011). https://doi.org/10.1177/1045389X11428363
Liu, B., Luo, Z., Gang, T.: Influence of low-frequency parameter changes on nonlinear vibro-acoustic wave modulations used for crack detection. Struct. Health Monit. 17(2), 218–226 (2017). https://doi.org/10.1177/1475921716689385
Prawin, J., Lakshmi, K., Rao, A.R.M.: A novel singular spectrum analysis–based baseline-free approach for fatigue-breathing crack identification. J. Intell. Mater. Syst. Struct. 29(10), 2249–2266 (2018). https://doi.org/10.1177/1045389x18758206
Prawin, J., Rama Mohan Rao, A.: Vibration-based breathing crack identification using non-linear intermodulation components under noisy environment. Struct. Health Monit. 19(1), 86–104 (2019). https://doi.org/10.1177/1475921719836953
Wang, R., Wu, Q., Yu, F., Okabe, Y., Xiong, K.: Nonlinear ultrasonic detection for evaluating fatigue crack in metal plate. Struct. Health Monit. 18(3), 869–881 (2018). https://doi.org/10.1177/1475921718784451
Masserey, B., Fromme, P.: Fatigue crack growth monitoring using high-frequency guided waves. Struct. Health Monit. Int. J. 12(5–6), 484–493 (2013). https://doi.org/10.1177/1475921713498532
Liu, P., Sohn, H., Yang, S., Lim, H.J.: Baseline-free fatigue crack detection based on spectral correlation and nonlinear wave modulation. Smart Mater. Struct. 25(12), 125034 (2016). https://doi.org/10.1088/0964-1726/25/12/125034
Klepka, A., Strączkiewicz, M., Pieczonka, L., Staszewski, W.J., Gelman, L., Aymerich, F., Uhl, T.: Triple correlation for detection of damage-related nonlinearities in composite structures. Nonlinear Dyn. 81(1–2), 453–468 (2015). https://doi.org/10.1007/s11071-015-2004-6
Liu, P., Jang, J., Yang, S., Sohn, H.: Fatigue crack detection using dual laser induced nonlinear ultrasonic modulation. Opt. Lasers Eng. 110, 420–430 (2018). https://doi.org/10.1016/j.optlaseng.2018.05.025
Wu, W., Qu, W., Xiao, L., Inman, D.J.: Detection and localization of fatigue crack with nonlinear instantaneous baseline. J. Intell. Mater. Syst. Struct. 27(12), 1577–1583 (2015). https://doi.org/10.1177/1045389x15596851
Boungou, D., Guillet, F., Badaoui, M.E., Lyonnet, P., Rosario, T.: Fatigue damage detection using cyclostationarity. Mech. Syst. Signal Process. 58–59, 128–142 (2015). https://doi.org/10.1016/j.ymssp.2014.11.010
Liu, P., Sohn, H., Jeon, I.: Nonlinear spectral correlation for fatigue crack detection under noisy environments. J. Sound Vib. 400, 305–316 (2017). https://doi.org/10.1016/j.jsv.2017.04.021
Muller, M., Sutin, A., Guyer, R., Talmant, M., Laugier, P., Johnson, P.A.: Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. J. Acoust. Soc. Am. 118(6), 3946–3952 (2005). https://doi.org/10.1121/1.2126917$
Broda, D., Staszewski, W.J., Martowicz, A., Uhl, T., Silberschmidt, V.V.: Modelling of nonlinear crack–wave interactions for damage detection based on ultrasound—a review. J. Sound Vib. 333(4), 1097–1118 (2014). https://doi.org/10.1016/j.jsv.2013.09.033
He, S., Ng, C.T.: Modelling and analysis of nonlinear guided waves interaction at a breathing crack using time-domain spectral finite element method. Smart Mater. Struct. 26(8), 085002 (2017). https://doi.org/10.1088/1361-665X/aa75f3
Shen, Y., Giurgiutiu, V.: Predictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors. J. Intell. Mater. Syst. Struct. 25(4), 506–520 (2013). https://doi.org/10.1177/1045389x13500572
Shen, Y., Giurgiutiu, V.: WaveFormRevealer: an analytical framework and predictive tool for the simulation of multi-modal guided wave propagation and interaction with damage. Struct. Health Monit. Int. J. 13(5), 491–511 (2014). https://doi.org/10.1177/1475921714532986
Shen, Y., Cesnik, C.E.: Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach. Ultrasonics 74, 106–123 (2017). https://doi.org/10.1016/j.ultras.2016.10.001
Radecki, R., Su, Z., Cheng, L., Packo, P., Staszewski, W.J.: Modelling nonlinearity of guided ultrasonic waves in fatigued materials using a nonlinear local interaction simulation approach and a spring model. Ultrasonics 84, 272–289 (2018). https://doi.org/10.1016/j.ultras.2017.11.008
Hafezi, M.H., Alebrahim, R., Kundu, T.: Peri-ultrasound for modeling linear and nonlinear ultrasonic response. Ultrasonics 80, 47–57 (2017). https://doi.org/10.1016/j.ultras.2017.04.015
Kim, J., Baltazar, A., Hu, J.W., Rokhlin, S.I.: Hysteretic linear and nonlinear acoustic responses from pressed interfaces. Int. J. Solids Struct. 43, 6436–6452 (2006). https://doi.org/10.1016/j.ijsolstr.2005.11.006
Pecorari, C.: Nonlinear interaction of plane ultrasonic waves with an interface between rough surfaces in contact. J. Acoust. Soc. Am. 113(6), 3065–3072 (2003). https://doi.org/10.1121/1.1570437
Jin, J., Johnson, P., Shokouhi, P.: An integrated analytical and experimental study of contact acoustic nonlinearity at rough interfaces of fatigue cracks. J. Mech. Phys. Solids 135, 103769 (2020). https://doi.org/10.1016/j.jmps.2019.103769
Shen, Y., Wang, J., Xu, W.: Nonlinear features of guided wave scattering from rivet hole nucleated fatigue cracks considering the rough contact surface condition. Smart Mater. Struct. 27(10), 105044 (2018). https://doi.org/10.1088/1361-665X/aadd2d
Jhang, K.-Y.: Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review. Int. J. Precis. Eng. Manuf. 10(1), 123–135 (2009). https://doi.org/10.1007/s12541-009-0019-y
Chopra, A.K.: Dynamics of Structures. Prentice Hall, Upper Saddle River (1995)
Dziedziech, K., Pieczonka, L., Adamczyk, M., Klepka, A., Staszewski, W.J.: Efficient swept sine chirp excitation in the non-linear vibro-acoustic wave modulation technique used for damage detection. Struct. Health Monit. 17(3), 565–576 (2018). https://doi.org/10.1177/1475921717704638
Solodov, I.: Resonant acoustic nonlinearity of defects for highly-efficient nonlinear NDE. J. Nondestr. Eval. 33(2), 252–262 (2014). https://doi.org/10.1007/s10921-014-0229-9
Acknowledgements
The supports from the National Natural Science Foundation of China (Contract Numbers 51605284 and 51975357) are thankfully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, J., Shen, Y., Rao, D. et al. An instantaneous-baseline multi-indicial nonlinear ultrasonic resonance spectral correlation technique for fatigue crack detection and quantification. Nonlinear Dyn 103, 677–698 (2021). https://doi.org/10.1007/s11071-020-06128-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-020-06128-x