Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Time series irreversibility analysis using Jensen–Shannon divergence calculated by permutation pattern

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An important feature of the time series in the real world is that its distribution has different degrees of asymmetry, which is what we call irreversibility. In this paper, we propose a new method named permutation pattern (PP) to calculate the Kullback–Leibler divergence (\({D}_{\mathrm{KL}}\)) and the Jensen–Shannon divergence (\({D}_{\mathrm{JS}}\)) to explore the irreversibility of time series. Meanwhile, we improve \({D}_{\mathrm{JS}}\) and obtain a complete mean divergence (\({D}_{\mathrm{m}}\)) through averaging \({D}_{\mathrm{KL}}\) of a time series and its inverse time series. The variation trend of \({D}_{\mathrm{m}}\) is similar to \({D}_{\mathrm{JS}}\), but the value of \({D}_{\mathrm{m}}\) is slightly larger and the description of irreversibility is more intuitive. Furthermore, we compare \({D}_{\mathrm{JS}}\) and \({D}_{\mathrm{m}}\) calculated by PP with those calculated by the horizontal visibility graph, and discuss their respective characteristics. Then, we investigate the advantages of \(\mathrm{D}_{\mathrm{JS}}\) and \({D}_{\mathrm{m}}\) through length variation, dynamic time variation, multiscale and so on. It is worth mentioning that we introduce Score and variance to analyze the practical significance of stock irreversibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mauboussin, M.J.: Revisiting market efficiency: the stock market as a complex adaptive system. J. Appl. Corp. Finance 14, 47–55 (2002)

    Article  Google Scholar 

  2. Shi, W.B., Shang, P.J.: Cross-sample entropy statistic as a measure of synchronism and cross-correlation of stock markets. Nonlinear Dyn. 71, 539–554 (2013)

    Article  MathSciNet  Google Scholar 

  3. Xiao, D., Wang, J.: Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis. Physica A 391, 4827–4838 (2012)

    Article  Google Scholar 

  4. Hu, Q.Z., Lu, H.P., Yu, X.X., Cheng, N.: Compressive measurement of urban public traffic system based on relational entropy and complex matter element. Syst. Eng. Theory Pract. 31, 186–192 (2011)

    Google Scholar 

  5. Berkes, F.: From community-based resource management to complex systems: the scale issue and marine commons. Ecol. Soc. 11, 709–723 (2006)

    Article  Google Scholar 

  6. Phillips, C.O., Singa, R.M., Rubin, H.R., Jaarsma, T.: Complexity of program and clinical outcomes of heart failure disease management incorporating specialist nurse-led heart failure clinics. A meta-regression analysis. Eur. J. Heart Fail. 7, 333–341 (2014)

    Article  Google Scholar 

  7. Mahmoud, G.M., Aly, S.A., AlKashif, M.A.: Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system. Nonlinear Dyn. 51, 171–181 (2009)

    Article  MathSciNet  Google Scholar 

  8. Aoki, T., Yawata, K., Aoyagi, T.: Self-organization of complex networks as a dynamical system. Phys. Rev. E 91, 012908 (2015)

    Article  MathSciNet  Google Scholar 

  9. Bär, K.J., Boettger, M.K., et al.: Non-linear complexity measures of heart rate variability in acute schizophrenia. J. Clin. Neurophysiol. 118, 2009–2015 (2007)

    Article  Google Scholar 

  10. Grewal, M.S., Glover, K.: Identifiability of linear and nonlinear dynamical systems. IEEE Trans. Automat. Contr. 21, 833–837 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Das, A.N., Murthy, R., Dan, O.P., Stephanou, H.E.: A multiscale assembly and packaging system for manufacturing of complex micro-nano devices. IEEE Trans. Autom. Sci. Eng. 9, 160–170 (2011)

    Article  Google Scholar 

  12. Xu, M., Shang, P.J.: Multiscale time irreversibility analysis of financial time series based on segmentation. Nonlinear Dyn. 94, 1603–1618 (2018)

    Article  Google Scholar 

  13. Ramsey, J.B., Rothman, P.: Time irreversibility and business cycle asymmetry. Working Papers 28, pp. 1–21 (1993)

  14. Rothman, P.: The comparative power of the TR test against simple threshold models. J. Appl. Econ. 7, 187–195 (2010)

    Article  Google Scholar 

  15. Hinich, M., Rothman, P.: Frequency-domain test of time reversibility. Macroecon Dyn. 2, 72–78 (1998)

    MATH  Google Scholar 

  16. Costa, M.D., Goldberger, A.L., Peng, C.K.: Broken asymmetry of the human heartbeat loss of time irreversibility in aging and disease. Phy. Rew. Lett. 95, 198102 (2005)

    Article  Google Scholar 

  17. Costa, M.D., Peng, C.K., Goldberger, A.L.: Multiscale analysis of heart rate dynamics-entropy and time irreversibility measures. Cardiovasc. Eng. 8, 88–93 (2008)

    Article  Google Scholar 

  18. Porta, A., Guzzetti, S., Montano, N., Gnecchi-Ruscone, T., Furlan, R., Malliani, A.: Time reversibility in short-term heart period variability. Comput. Cardiol. 33, 77–80 (2006)

    Google Scholar 

  19. Guzik, P., Piskorski, J., Krauze, T., Wykretowicz, A., Wysocki, H.: Heart rate asymmetry by Poincaré plots of RR intervals. Biomed. Eng Biomed. Tech. 51, 272–275 (2006)

    Article  Google Scholar 

  20. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.C.: From time series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. USA 105, 4972–4975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luque, B., Lacasa, L., Luque, J., Ballesteros, F.: Horizontal visibility graphs: exact results for random time series. Phy. Rev. E 80, 046103 (2009)

    Article  Google Scholar 

  22. Lacasa, L., Luque, B., Luque, J., Nuno, J.C.: The visibility graph: a new method for estimating the Hurst exponent of fractional Brownian motion. EPL Europhys. Lett. 86, 30001 (2009)

    Article  Google Scholar 

  23. Lacasa, L., Nuñez, A., et al.: Time series irreversibility: a visibility graph approach. Eur. Phys. J. B 85, 217–227 (2012)

    Article  Google Scholar 

  24. Lacasa, L., Flanagan, R.: Time reversibility from visibility graphs of non-stationary processes. Phys. Rev. E 92, 022817 (2015)

    Article  MathSciNet  Google Scholar 

  25. Shannon, C.E.: The Mathematical Theory of Communication, vol. 5, pp. 3–55. McGraw-Hill, New York (1948)

    Google Scholar 

  26. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  27. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing, vol. 26, pp. 91–92. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  28. Dagan, I., Lee, L., Pereira, F.: Similarity-based methods for word sense disambiguation. ACL 6493, 5663 (1997)

    Google Scholar 

  29. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. IEEE. Trans. Inf. Theory 21, 493–501 (1975)

    Article  Google Scholar 

  30. Cánovas, J.S., Guillamón, A.: Permutations and time series analysis. Chaos 19, 043103 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Matilla-García, M., Marín, M.R.: A non-parametric independence test using permutation entropy. J. Econom. 144, 139–155 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Amigó, J.M., Zambrano, S., Sanjuán, M.A.F.: True and false forbidden patterns in deterministic and random dynamics. Europhys. Lett. 79, 50001 (2007)

    Article  MathSciNet  Google Scholar 

  33. Wu, S.D., Wu, C.W., et al.: Analysis of complex time series using refined composite multiscale entropy. Phys. Lett. A 378, 1369–1374 (2014)

    Article  MATH  Google Scholar 

  34. Hosking, J.R.M.: Fractional differencing. Biometrika 68, 165–176 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Podobnik, B., Horvatic, D., et al.: Modeling long-range cross-correlations in two-component ARFIMA and FIARCH processes. Physica A 387, 3954–3959 (2008)

    Article  MathSciNet  Google Scholar 

  36. Granger, C.W.J., Joyeux, R.: An Introduction to Long-Memory Time Series Models and Fractional Differencing. Harvard University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The financial support from the Fundamental Research Funds for the Central Universities (2018YJS170) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Shang, P. & Zhang, X. Time series irreversibility analysis using Jensen–Shannon divergence calculated by permutation pattern. Nonlinear Dyn 96, 2637–2652 (2019). https://doi.org/10.1007/s11071-019-04950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04950-6

Keywords

Navigation