Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Differential equation software for the computation of error-controlled continuous approximate solutions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we survey selected software packages for the numerical solution of boundary value ODEs (BVODEs), time-dependent PDEs in one spatial dimension (1DPDEs), and initial value ODEs (IVODEs). A unifying theme of this paper is our focus on software packages for these problem classes that compute error-controlled, continuous numerical solutions. A continuous numerical solution can be accessed by the user at any point in the domain. We focus on error-control software; this means that the software adapts the computation until it obtains a continuous approximate solution with a corresponding error estimate that satisfies the user tolerance. The second section of the paper will provide an overview of recent work on the development of COLNEWSC, an updated version of the widely used collocation BVODE solver, COLNEW, that returns an error-controlled continuous approximate solution based on the use of a superconvergent interpolant to the underlying collocation solution. The third section of the paper gives a brief review of recent work on the development of a new 1DPDE solver, BACOLIKR, that provides time- and space-dependent event detection for an error-controlled continuous numerical solution. In the fourth section of the paper, we briefly review the state of the art in IVODE software for the computation of error-controlled continuous numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Test Set for BVP Solvers. https://archimede.uniba.it/~bvpsolvers/testsetbvpsolvers/

  2. Agowun, H., Muir, P.H.: Performance analysis of ODE solvers on Covid-19 models with discontinuities. Saint Mary’s University, Dept. of Mathematics and Computing Science Technical Report Series, Technical Report 2022_001 (2022). http://cs.smu.ca/tech_reports

  3. Agowun, H., Muir, P.H.: Low cost multistep interpolants for Runge Kutta methods. Work in progress, (2024)

  4. Allen, S.M., Cahn, J.W.: Ground state structures in ordered binary alloys with second neighbor interations. Acta Metallurgica 20, 423–433 (1972)

    Article  Google Scholar 

  5. Arsenault, T., Smith, T., Muir, P.H.: Superconvergent interpolants for efficient spatial error estimation in 1D PDE collocation solvers. Can. Appl. Math. Q. 17, 409–431 (2009)

    MathSciNet  Google Scholar 

  6. Arsenault, T., Smith, T., Muir, P.H., Pew, J.: Asymptotically correct interpolation-based spatial error estimation for 1D PDE solvers. Can. Appl. Math. Q. 20, 307–328 (2012)

    MathSciNet  Google Scholar 

  7. Ascher, U., Christiansen, J., Russell, R.D.: Algorithm 569: COLSYS: Collocation software for boundary-value ODEs [d2]. ACM Trans. Math. Softw. (TOMS) 7(2), 223–229 (1981)

    Article  Google Scholar 

  8. Ascher, U.M., Mattheij, R.M.M. Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Dfferential Euations, vol. 13 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (1995)

  9. Bader, G., Ascher, U.M.: A new basis implementation for a mixed order boundary value ODE solver. SIAM J. Sci. Stat. Comput. 8(4), 483–500 (1987)

    Article  MathSciNet  Google Scholar 

  10. Boehme, T.R., Onder, C.H., Guzzella, L.: Code-generator-based software package for defining and solving one-dimensional, dynamic, catalytic reactor models. Comput. Chem. Eng. 32(10), 2445–2454 (2008)

    Article  Google Scholar 

  11. Boisvert, J.J., Muir, P.H., Spiteri, R.J.: A Runge-Kutta BVODE solver with global error and defect control. ACM Transactions on Mathematical Software 39(2), Art. 11, 22 (2013)

  12. Bonaventura, Z., Trunec, D., Meško, M., Vašina, P., Kudrle, V.: Theoretical study of pulsed microwave discharge in nitrogen. Plasma Sources Sci. Technol. 14(4), 751 (2005)

    Article  Google Scholar 

  13. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, vol. 14 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (1996)

  14. Brown, P.N., Hindmarsh, A.C., Petzold, L.R.: Using Krylov methods in the solution of large-scale differential-algebraic systems. SIAM J. Sci. Comput. 15, 1467–1488 (1994)

    Article  MathSciNet  Google Scholar 

  15. Brown, P.N., Hindmarsh, A.C., Petzold, L.R.: Consistent initial condition calculation for differential-algebraic systems. SIAM J. Sci. Comput. 19, 1495–1512 (1998)

    Article  MathSciNet  Google Scholar 

  16. Burrage, K., Chipman, F.H., Muir, P.H.: Order results for mono-implicit Runge-Kutta methods. SIAM J. Numer. Anal. 31(3), 876–891 (1994)

    Article  MathSciNet  Google Scholar 

  17. Cerutti, J.H., Parter, S.V.: Collocation methods for parabolic partial differential equations in one space dimension. Numerische Mathematik 26(3), 227–254 (1976)

    Article  MathSciNet  Google Scholar 

  18. Collodel, L.G., Doneva, D.D.: Solitonic Boson Stars: Numerical solutions beyond the thin-wall approximation. Phys. Rev. D 106(8), 084057 (2022)

    Article  MathSciNet  Google Scholar 

  19. de Boor, C.: A Practical Guide to Splines, vol. 27 of Applied Mathematical Sciences. Springer-Verlag, New York, revised edition, (2001)

  20. Enright, W.H., Hayes, W.B.: Robust and reliable defect control for Runge-Kutta methods. ACM Transactions on Mathematical Software 33(1), 1-es (2007)

    Article  Google Scholar 

  21. Enright, W.H., Muir, P.H.: Superconvergent interpolants for the collocation solution of boundary value ordinary differential equations. SIAM J. Sci. Comput. 21(1), 227–254 (1999)

    Article  MathSciNet  Google Scholar 

  22. Falini, A., Mazzia, F., Sestini, A.: Hermite–Birkhoff spline Quasi-Interpolation with application as dense output for Gauss–Legendre and Gauss–Lobatto Runge–Kutta schemes. Applied Numerical Mathematics, (2023)

  23. Gear, C.W., Osterby, O.: Solving ordinary differential equations with discontinuities. ACM Trans. Math. Softw. 10(1), 23–44 (1984)

    Article  MathSciNet  Google Scholar 

  24. Green, K.R., Spiteri, R.J.: Extended BACOLI: Solving one-dimensional multiscale parabolic PDE systems with error control. ACM Trans. Math. Softw. 45(1), 1–19 (2019)

    Article  MathSciNet  Google Scholar 

  25. Mazzia, F., Cash, J.R.: A Fortran test set for boundary value problem solvers. In AIP Conference Proceedings, vol. 1648. AIP Publishing (2015)

  26. Mazzia, F., Cash, J.R., Soetaert, K.: A test set for stiff initial value problem solvers in the open source software r: Package detestset. J. Comput. Appl. Math. 236(16), 4119–4131 (2012)

    Article  MathSciNet  Google Scholar 

  27. Mazzia, F., Cash, J.R., Soetaert, K.: Solving boundary value problems in the open source software R: Package bvpSolve. Opusc. Math. 34(2), 387–403 (2014)

    Article  MathSciNet  Google Scholar 

  28. Mazzia, F., Sestini, A.: The BS class of hermite spline quasi-interpolants on nonuniform knot distributions. BIT Numer. Math. 49, 611–628 (2009)

    Article  MathSciNet  Google Scholar 

  29. Muir, P.H., Owren, B.: Order barriers and characterizations for continuous mono-implicit Runge-Kutta schemes. Math. Comput. 61(204), 675–699 (1993)

    MathSciNet  Google Scholar 

  30. Petit, N., Sciarretta, A.: Optimal drive of electric vehicles using an inversion-based trajectory generation approach. IFAC Proceedings Volumes 44(1), 14519–14526 (2011)

    Article  Google Scholar 

  31. Pew, J., Li, Z., Muir, P.H.: Algorithm 962: BACOLI: B-spline adaptive collocation software for PDEs with interpolation-based spatial error control. ACM Transactions on Mathematical Software 42(3), 25:1-25:17 (2016)

    Article  MathSciNet  Google Scholar 

  32. Pew, J., Tannahill, C., Muir, P.H.: Error control B-spline Gaussian collocation PDE software with time-space event detection. Saint Mary’s University, Dept. of Mathematics and Computing Science Technical Report Series, Technical Report 2020_001 (2020) http://cs.smu.ca/tech_reports

  33. Shampine, L.F.: Efficient Runge-Kutta pairs with local error control equivalent to residual control. Private communication, (2021)

  34. Shampine, L.F.: Error control and ode23. Private communication, (2021)

  35. Soetaert, K., Petzoldt, T., Setzer, R.W.: Solving differential equations in r: package desolve. J. Stat. Softw. 33, 1–25 (2010)

    Article  Google Scholar 

  36. Tannahill, C., Muir, P.: bacoli_py - python package for the error controlled numerical solution of 1D time-dependent PDEs. In International Conference on Applied Mathematics, Modeling and Computational Science, p. 289–300. Springer, (2021)

  37. Trunec, D., Bonaventura, Z., Nečas, D.: Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma. J. Phys. D: Appl. Phys. 39(12), 2544 (2006)

    Article  Google Scholar 

  38. Tsitouras, Ch.: Runge-Kutta interpolants for high precision computations. Numer. Algorithms 44, 291–307 (2007)

    Article  MathSciNet  Google Scholar 

  39. Vallino, J.J., Huber, J.A.: Using maximum entropy production to describe microbial biogeochemistry over time and space in a meromictic pond. Front. Environ. Sci. 6, 100 (2018)

    Article  Google Scholar 

  40. Wang, R., Keast, P., Muir, P.H.: BACOL: B-spline Adaptive COLlocation software for 1D parabolic PDEs. ACM Trans. Math. Softw. 30(4), 454–470 (2004)

    Article  Google Scholar 

  41. Wang, R., Keast, P., Muir, P.H.: A high-order global spatially adaptive collocation method for 1-D parabolic PDEs. Appl. Numer. Math. 50(2), 239–260 (2004)

    Article  MathSciNet  Google Scholar 

  42. Zong, L., Emami, M.R.: Concurrent base-arm control of space manipulators with optimal rendezvous trajectory. Aerosp. Sci. Technol. 100, 105822 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for many helpful suggestions.

Funding

The second author is funded by the Natural Sciences and Engineering Research Council of Canada and Saint Mary’s University.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the manuscript.

Corresponding author

Correspondence to Paul Muir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, M., Muir, P. Differential equation software for the computation of error-controlled continuous approximate solutions. Numer Algor 96, 1021–1044 (2024). https://doi.org/10.1007/s11075-024-01784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-024-01784-1

Keywords

Mathematics Subject Classification (2010)

Navigation