Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A numerical method to approximate the solutions of nonlinear systems in densifiable sets

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the present paper, we study the approximation of solutions (if any) of a system of equations, where the only condition required to the involved functions is to be continuous. To be more precise, by using the so called \(\alpha \)-dense curves, if the given system has some solution in a densifiable set we propose a method, which only use evaluations of single variable functions, to approximate at least one solution of the system in such set. The feasibility and reliability of the proposed method is illustrated by several examples, and its drawbacks are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Fig. 3

Similar content being viewed by others

Data availability

The results/data/figures in this manuscript have not been published elsewhere, nor are they under consideration by another publisher.

References

  1. Butz, A.R.: Solution of nonlinear equations with space filling curves. J. Math. Anal. Appl. 37(2), 351–383 (1972)

    Article  MathSciNet  Google Scholar 

  2. Brent, R.P.: Algorithms for minimization without derivatives. Dover Books on Mathematics, USA (1973)

    Google Scholar 

  3. Cherruault, Y., Mora, G.: Optimisation globale. Théorie des Courbes \(\alpha \)-denses. Económica, Paris (2005)

  4. Davis, P.J., Rabinowitz, P.: Methods of numerical integration, 2nd edn. Academic Press Inc., London (1984)

    Google Scholar 

  5. Dennis, J.E., Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations. SIAM’s Classics in Applied Mathematics, Philadelphia (1987)

    Google Scholar 

  6. Galántai, A.: Always convergent methods for nonlinear equations of several variables. Numer. Algorithms 78, 625–641 (2018)

    Article  MathSciNet  Google Scholar 

  7. Galántai, A.: Always convergent method for solving nonlinear equations. J. Comput. Appl. Mech. 10(2), 183–208 (2015)

    Article  Google Scholar 

  8. García, G.: Approximating roots of nonlinear systems by \(\alpha \)-dense curves. Numer. Algorithms 82, 749–760 (2019)

    Article  MathSciNet  Google Scholar 

  9. García, G., Mora, G.: Approximating multiple integrals of continuous functions by \(\delta \)-uniform curves. Ann. Univ. Ferrara Sez. VII Sci. Mat. 67(1), 59–71 (2021)

  10. García, G., Mora, G., Redtwitz, D.A.: Box-counting dimension computed by alpha-dense curves. Fractals 25(5), 11 (2017)

    Article  Google Scholar 

  11. Khamisov, O.V.: Finding roots of nonlinear equations using the method of concave support functions. Math. Notes 98(3/4), 484–491 (2015)

    Article  MathSciNet  Google Scholar 

  12. Mora, G., Cherruault, Y.: Characterization and generation of \(\alpha \)-dense curves. Comput. Math. Appl. 33(9), 83–91 (1997)

    Article  MathSciNet  Google Scholar 

  13. Mora, G., Redtwitz, D.A.: Densifiable metric spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 105(1), 71–83 (2011)

  14. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press, New York (1970)

    Google Scholar 

  15. Prasolov, V.V.: Polynomials. Springer, Berlin, Heidelber (2009)

    Google Scholar 

  16. Rahal, M., Abdelkader, Z., Rachid, E.: Generating \(\alpha \)-dense curves in non-convex sets to solve a class of non-smooth constrained global optimization. Croat. Oper. Res. Rev. 289–314 (2019)

  17. Sagan, H.: Space-filling curves. Springer, New York (1994)

    Book  Google Scholar 

  18. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to global optimization exploiting space-filling curves. Springer, New York (2013)

    Book  Google Scholar 

  19. Smiley, M.W., Chun, C.: An algorithm for finding all solutions of a nonlinear system. J. Comput. Appl. Math. 137(2), 293–315 (2001)

    Article  MathSciNet  Google Scholar 

  20. Strobin, F.: Some porous and meager sets of continuous mappings. J. Nonlinear Convex Anal. 13, 351–361 (2012)

    MathSciNet  Google Scholar 

  21. Yamamura, Y., Fujioka, T.: Finding all solutions of nonlinear equations using the dual simplex method. J. Comput. Appl. Math. 152(1–2), 587–595 (2003)

    Article  MathSciNet  Google Scholar 

  22. Zabinsky, Z.B.: Stochastic adaptive search for global optimization. Nonconvex Optimization and Its Applications (NOIA, vol. 72), Springer New York, 2003

  23. Ziadi, R., Bencherif-Madani, A.: A covering method for continuous global optimisation. Int. J. Comput. Sci. Math. 13(13), 369–390 (2021)

    Article  MathSciNet  Google Scholar 

  24. Ziadi, R., Bencherif-Madani, A.: A mixed algorithm for smooth global optimization. J. of Mathematical Modeling 11(2), 207–228 (2023)

    MathSciNet  Google Scholar 

  25. Ziadi, R., Bencherif-Madani, A., Ellaia, R.: A deterministic method for continuous global optimization using a dense curve. Math. Comput. Simul. 178(5), 62–91 (2020)

    Article  MathSciNet  Google Scholar 

  26. Ziadi, R., Bencherif-Madani, A., Ellaia, R.: Continuous global optimization through the generation of parametric curves. Appl. Math. Comput. 282(5), 65–83 (2016)

    MathSciNet  Google Scholar 

  27. Zufiria, P.J., Guttalu, R.S.: On an application of dynamical systems theory to determine all the zeros of a vector function. J. Math. Anal. Appl. 152(1), 269–295 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

To the anonymous reviewers for their helpful comments and suggestions which improved the quality of the paper. Also, to Prof. Dr. Gaspar Mora for his valuable help with the choice of the references cited in the paper.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Not applicable

Corresponding author

Correspondence to G. García.

Ethics declarations

Ethical approval

Not applicable

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Systems used in Sub-section 4.1

$$\begin{aligned} \text {Yamamoto1}\left\{ \begin{array}{ll} x_{1}^{2}+x_{2}^{3} =0\\ x_{2}^{2}=0 \end{array}\right. ,\quad \text {Powell1}\left\{ \begin{array}{ll} x_{1}-1 =0 \\ x_{1}x_{2}-1=0 \end{array}\right. \end{aligned}$$
$$\begin{aligned} \text {Yamamoto2}\left\{ \begin{array}{ll} x_{1}^{3}+x_{1}x_{2}=0 \\ x_{2}+x_{2}^{2}=0 \end{array}\right. ,\quad \text {Fuchs}\left\{ \begin{array}{ll} x_{1}^{2}-x_{2}^{2}-1=0 \\ x_{2}^{2}+x_{2}^{2}-4=0 \end{array}\right. \end{aligned}$$
$$\begin{aligned} \text {Brezinski1}\left\{ \begin{array}{ll} 0.5x_{2}^{2}-x_{2}^{2}=0 \\ -x_{2}+\sin (x_{1})+\sin (x_{2}-1)+1=0 \\ \end{array}\right. ,\quad \text {Bartish}\left\{ \begin{array}{ll} x_{1}^{2}+x_{2}^{2}-1=0 \\ 0.75 x_{1}^{3}-x_{2}=0 \end{array}\right. \end{aligned}$$
$$\begin{aligned} \text {Powell2}\left\{ \begin{array}{ll} 10000x_{1}x_{2}-1=0 \\ \exp (-x_{1})+\exp (-x_{2})-1.0001=0 \\ \end{array}\right. ,\quad \text {Boggs}\left\{ \begin{array}{ll} x_{1}^{2}-x_{2}+1=0 \\ x_{1}-\cos (0.5\pi x_{2})=0 \\ \end{array}\right. \end{aligned}$$
$$\begin{aligned} \text {Brezinski2}\left\{ \begin{array}{ll} -x_{1}+0.5x_{2}^{2}-1.5=0 \\ -x_{2}+0.605 \exp (1-x_{1}^{2})+0.395=0 \end{array}\right. \end{aligned}$$
$$\begin{aligned} \text {Allgower-Geor1}\left\{ \begin{array}{ll} (x_{1}-x_{2}^{2})(x_{1}-\sin (x_{2}))=0 \\ \cos (x_{2})-x_{1})(\cos (x_{1})-x_{2})=0 \\ \end{array}\right. \end{aligned}$$
$$\begin{aligned} \text {Yamamoto3}\left\{ \begin{array}{ll} x_{1}+x_{2}+x_{2}-1=0 \\ 0.2x_{1}^{3} +0.5x_{2}^{2}-x_{3}+0.5x_{3}^{3}+0.5= 0 \\ x_{2}+x_{2}+0.5x_{3}^{2}-0.5=0 \end{array}\right. \end{aligned}$$
$$\begin{aligned} \text {Allgower-Geor2}\left\{ \begin{array}{ll} x_{1}^{2}+2x_{2}^{2}-4=0 \\ x_{1}^{2}+x_{2}^{2}+x_{3}-8=0 \\ (x_{1}-1)^{2}+(2x_{2}-\sqrt{2})^{2}+(x_{3}-5)^{2}-4=0 \end{array}\right. \end{aligned}$$
$$\begin{aligned} \text {Brown-Conte}\left\{ \begin{array}{ll} 3x_{1}+x_{2}+2x_{3}^{2}-3=0 \\ -3x_{1}+5x_{2}^{2}+2x_{1}x_{3}-1=0 \\ 25x_{1}x_{2}+20x_{3}+12=0 \\ \end{array}\right. \end{aligned}$$
$$\begin{aligned} \text {Babitsch}\left\{ \begin{array}{ll} x_{1}x_{2}+x_{2}x_{3}+x_{1}x_{3}-47=0 \\ x_{1}+x_{2}^{2}-x_{3}^{2}=0 \\ (x_{3}-x_{1})(x_{3}-x_{2})-2=0 \end{array}\right. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, G. A numerical method to approximate the solutions of nonlinear systems in densifiable sets. Numer Algor 96, 1925–1943 (2024). https://doi.org/10.1007/s11075-023-01690-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01690-y

Keywords

Mathematics Subject Classification (2010)

Navigation