Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Supercloseness of weak Galerkin method on Bakhvalov-type mesh for a singularly perturbed problem in 1D

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we analyze supercloseness in an energy norm of a weak Galerkin (WG) method on a Bakhvalov-type mesh for a singularly perturbed two-point boundary value problem. For this aim, a special approximation is designed according to the specific structures of the mesh, the WG finite element space and the WG scheme. More specifically, in the interior of each element, the approximation consists of a Gauß–Lobatto interpolant inside the layer and a Gauß–Radau projection outside the layer. On the boundary of each element, the approximation equals the true solution. Besides, with the help of over-penalization technique inside the layer, we prove uniform supercloseness of order k + 1 for the WG method. Numerical experiments verify the supercloseness result and test the influence of different penalization parameters inside the layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. AL-Taweel, A., Hussain, S., Wang, X.: Supercloseness analysis of stabilizer free weak Galerkin finite element method for convection-diffusion equations. J. Appl. Anal. Comput. 11(4), 1963–1981 (2021)

    MathSciNet  Google Scholar 

  2. Al-Taweel, A., Hussain, S., Wang, X., Jones, B.: A p0-p0 weak Galerkin finite element method for solving singularly perturbed reaction-diffusion problems. Numer. Methods Partial Differential Equations 36 (2), 213–227 (2020)

    MathSciNet  Google Scholar 

  3. Al-Taweel, A., Wang, X., Ye, X., Zhang, S.: A stabilizer free weak Galerkin finite element method with supercloseness of order two. Numer. Methods Partial Differential Equations 37(2), 1012–1029 (2021)

    MathSciNet  Google Scholar 

  4. Arnold, D.N., Douglas, J. Jr, Thomée, V.: Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable. Math. Comp. 36(153), 53–63 (1981)

    MathSciNet  MATH  Google Scholar 

  5. Babuška, I., Strouboulis, T.: The finite element method and its reliability. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (2001)

    MATH  Google Scholar 

  6. Bakhvalov, N.S.: On the optimization of the methods for solving boundary value problems in the presence of a boundary layer. Zh. Vychisl. Mat. Mat. Fiz. 9, 841–859 (1969)

    MathSciNet  Google Scholar 

  7. Cheng, Y., Mei, Y.: Analysis of generalised alternating local discontinuous Galerkin method on layer-adapted mesh for singularly perturbed problems. Calcolo 58(4), Paper No. 52, 36 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47(6), 4044–4072 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002)

    Google Scholar 

  10. Cui, M., Zhang, S.: On the uniform convergence of the weak Galerkin finite element method for a singularly-perturbed biharmonic equation. J. Sci. Comput. 82(1), Paper No. 5, 15 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Durán, R.G., Lombardi, A.L., Prieto, M.I.: Supercloseness on graded meshes for q1 finite element approximation of a reaction-diffusion equation. J. Comput. Appl. Math. 242, 232–247 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Franz, S.: Singularly perturbed problems with characteristic layers: Supercloseness and postprocessing. PhD thesis, Department of Mathematics, TU Dresden (2008)

  13. Li, D., Wang, C., Wang, J.: Superconvergence of the gradient approximation for weak Galerkin finite element methods on nonuniform rectangular partitions. Appl. Numer. Math. 150, 396–417 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Lin, R., Ye, X., Zhang, S., Zhu, P.: A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems. SIAM J. Numer. Anal. 56(3), 1482–1497 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Linß, T.: Solution decompositions for linear convection-diffusion problems. Z. Anal. Anwendungen 21(1), 209–214 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Linß, T.: Layer-adapted meshes for reaction-convection-diffusion problems, volume 1985 of Lecture Notes in Mathematics. Springer, Berlin (2010)

    MATH  Google Scholar 

  17. Liu, X., Stynes, M., Zhang, J.: Supercloseness of edge stabilization on Shishkin rectangular meshes for convection–diffusion problems with exponential layers. IMA J. Numer. Anal. 38(4), 2105–2122 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Liu, X., Zhang, J.: Pointwise estimates of SDFEM on Shishkin triangular meshes for problems with characteristic layers. Numer. Algorithms 78 (2), 465–483 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Liu, X., Zhang, J.: Uniform supercloseness of Galerkin finite element method for convection-diffusion problems with characteristic layers. Comput. Math. Appl. 75, 444–458 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Mu, L., Wang, J., Ye, X., Zhang, S.: A weak Galerkin finite element method for the Maxwell equations. J. Sci. Comput. 65(1), 363–386 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Roos, H.-G.: Error estimates for linear finite elements on Bakhvalov-type meshes. Appl. Math. 51(1), 63–72 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations, volume 24 of Springer Series in Computational Mathematics. Springer, Berlin, 2nd Edn (2008)

    MATH  Google Scholar 

  23. Shishkin, G.I.: Grid Approximation of Singularly Perturbed Elliptic and Parabolic Equations (In Russian). Second doctoral thesis, Keldysh Institute, Moscow (1990)

  24. Stynes, M., Stynes, D.: Convection-diffusion problems, volume 196 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2018). Atlantic Association for Research in the Mathematical Sciences (AARMS), Halifax, NS

    MATH  Google Scholar 

  25. Stynes, M., Tobiska, L.: The SDFEM for a convection-diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal. 41(5), 1620–1642 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Wahlbin, L.B.: Superconvergence in Galerkin Finite Element Methods, Volume 1605 of Lecture Notes in Mathematics. Springer, Berlin (1995)

    Google Scholar 

  27. Wang, J., Wang, R., Zhai, Q., Zhang, R.: A systematic study on weak Galerkin finite element methods for second order elliptic problems. J. Sci. Comput. 74(3), 1369–1396 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Wang, J., Ye, X.: A weak Galerkin finite element method for the Stokes equations. Adv. Comput. Math. 42(1), 155–174 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Wang, R., Zhang, R., Zhang, X., Zhang, Z.: Supercloseness analysis and polynomial preserving recovery for a class of weak Galerkin methods. Numer. Methods Partial Differential Equations 34(1), 317–335 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Yan, N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. Science Press, Beijing (2008)

    Google Scholar 

  33. Zhang, J., Liu, X.: Analysis of SDFEM on Shishkin triangular meshes and hybrid meshes for problems with characteristic layers. J. Sci. Comput. 68(3), 1299–1316 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Zhang, J., Liu, X.: Supercloseness of the SDFEM on Shishkin triangular meshes for problems with exponential layers. Adv. Comput. Math. 43 (4), 759–775 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Zhang, J., Liu, X.: Supercloseness of continuous interior penalty methods on Shishkin triangular meshes and hybrid meshes for singularly perturbed problems with characteristic layers. J. Sci. Comput. 76(3), 1633–1656 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Zhang, J., Liu, X.: Supercloseness of the continuous interior penalty method for singularly perturbed problems in 1D: Vertex-cell interpolation. Appl. Numer. Math. 123, 88–98 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Zhang, J., Liu, X.: Optimal order of uniform convergence for finite element method on Bakhvalov-type meshes. J. Sci. Comput. 85(1), 2 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Zhang, J., Liu, X.: Uniform convergence of a weak Galerkin finite element method on Shishkin mesh for singularly perturbed convection-diffusion problems in 2D. Appl. Math. Comput. 432, 127346 (2022)

    MathSciNet  MATH  Google Scholar 

  39. Zhang, J., Liu, X.: Uniform convergence of a weak Galerkin method for singularly perturbed convection-diffusion problems. Math. Comput. Simulation 200, 393–403 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, J., Liu, X.: Supercloseness and postprocessing for linear finite element method on Bakhvalov-type meshes. Numer. Algor., https://doi.org/10.1007/s11075-022-01353-4 (2022)

  41. Zhang, J., Liu, X., Yang, M.: Optimal order l2 error estimate of SDFEM on Shishkin triangular meshes for singularly perturbed convection-diffusion equations. SIAM J. Numer. Anal. 54(4), 2060–2080 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, J., Stynes, M.: Supercloseness of continuous interior penalty method for convection–diffusion problems with characteristic layers. Comput. Methods Appl. Mech. Engrg. 319, 549–566 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge-K,utta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer Anal. 42(2), 641–666 (2004)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, Z.: Finite element superconvergence approximation for one-dimensional singularly perturbed problems. Numer. Methods Partial Differential Equations 18(3), 374–395 (2002)

    MathSciNet  MATH  Google Scholar 

  45. Zhu, P., Xie, S.: A uniformly convergent weak Galerkin finite element method on Shishkin mesh for 1d convection-diffusion problem. J. Sci Comput. 85(2), 34 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Zhu, P., Xie, S.: Superconvergent weak Galerkin methods for non-self adjoint and indefinite elliptic problems. Appl. Numer. Math. 172, 300–314 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous referees for their valuable comments and suggestions that led us to improve this paper.

Funding

This research is supported by National Natural Science Foundation of China (11771257), Shandong Provincial Natural Science Foundation, China (ZR2021MA004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, J. Supercloseness of weak Galerkin method on Bakhvalov-type mesh for a singularly perturbed problem in 1D. Numer Algor 93, 367–395 (2023). https://doi.org/10.1007/s11075-022-01420-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01420-w

Keywords

Navigation