Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Interlacing and bounds of zeros of quasi-orthogonal little q-Jacobi polynomials

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider the little q-Jacobi polynomials of various degrees in quasi-orthogonal sequences \(\left \{p_{n}(z;a,b\vert q)\right \}_{n=0}^{\infty }\) characterized by aq2,bq ∈ (0,1) with aq > 1 and study the interlacing properties of their zeros. The interlacing of the zeros of the quasi-orthogonal polynomials pn(z;a,b|q) and the orthogonal polynomials pm(z;aqk,b|q), \(m,n\in \mathbb {N}, k\in \{1,2\}\) is discussed. We derive new bounds for the least zero of pn(z;a,b|q) and compare their limiting cases to those of the quasi-orthogonal Jacobi polynomials due to Driver and Jordaan (SIGMA 12, 042, 13 pages 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer Monographs in Mathematics. Springer Verlag, Berlin (2010). https://doi.org/10.1007/978-3-642-05014-5https://doi.org/10.1007/978-3-642-05014-5

    Book  MATH  Google Scholar 

  2. Gasper, G., Rahman, M.: Basic Hypergeometric Series, vol. 35. Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press, Cambridge (1990). https://doi.org/10.1017/CBO9780511526251https://doi.org/10.1017/CBO9780511526251

    MATH  Google Scholar 

  3. Riesz, M.: Sur le problème des moments, III. Ark. Mat. Astron. Fys. 17(16), 1–52 (1923)

    MATH  Google Scholar 

  4. Fejér, L.: Mechanische Quadraturen mit positiven Cotesschen Zahlen. Math. Z. 37, 287–309 (1933). https://doi.org/10.1007/BF01474575

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezinski, C., Driver, K., Redivo-Zaglia, M.: Quasi-orthogonality with applications to some families of classical orthogonal polynomials. Appl. Numer. Math. 48, 157–168 (2004). https://doi.org/10.1016/j.apnum.2003.10.001

    Article  MathSciNet  MATH  Google Scholar 

  6. Chihara, T.S.: On quasi-orthogonal polynomials. Proc. Amer. Math. Soc. 8, 765–767 (1957). https://doi.org/10.2307/2033295

    Article  MathSciNet  MATH  Google Scholar 

  7. Dickinson, D.: On quasi-orthogonal polynomials. Proc. Amer. Math. Soc. 12, 185–194 (1961). https://doi.org/10.2307/2034306

    Article  MathSciNet  MATH  Google Scholar 

  8. Draux, A.: On quasi-orthogonal polynomials. J. Approx. Theory 62(1), 1–14 (1990). https://doi.org/10.1016/0021-9045(90)90042-O

    Article  MathSciNet  MATH  Google Scholar 

  9. Joulak, H.: A contribution to quasi-orthogonal polynomials and associated polynomials. Appl. Numer. Math. 54(1), 65–78 (2005). https://doi.org/10.1016/j.apnum.2004.10.009

    Article  MathSciNet  MATH  Google Scholar 

  10. Shohat, J.A.: On mechanical quadratures, in particular, with positive coefficients. Trans. Amer. Math. Soc. 42(3), 461–496 (1937). https://doi.org/10.2307/1989740

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezinski, C., Driver, K., Redivo-Zaglia, M.: Zeros of quadratic quasi-orthogonal order 2 polynomials. Appl. Numer. Math. 135, 143–145 (2019). https://doi.org/10.1016/j.apnum.2018.08.012

    Article  MathSciNet  MATH  Google Scholar 

  12. Szegö, G.: Orthogonal Polynomials, vol. XXIII. Amer. Math. Soc. Colloq. Publ. (1939). https://doi.org/10.1090/coll/023

  13. Tcheutia, D.D., Jooste, A.S., Koepf, W.: Quasi-orthogonality of some hypergeometric and q-hypergeometric polynomials. SIGMA 14, 051, 26 pages (2018). https://doi.org/10.3842/SIGMA.2018.051https://doi.org/10.3842/SIGMA.2018.051

    MathSciNet  MATH  Google Scholar 

  14. Askey, R.A.: Graphs as an aid to understanding special functions, in asymptotic and computational analysis. Winnipeg, MB, 1989, Lecture Notes in Pure and Appl. Math. 124, 3–33 (1990). https://doi.org/10.1201/9781003072584-2

    Article  Google Scholar 

  15. Dimitrov, D.K., Ismail, M.E.H., Rafaeli, F.R.: Interlacing of zeros of orthogonal polynomials under modification of the measure. J. Approx. Theory 175, 64–76 (2013). https://doi.org/10.1016/j.jat.2013.07.007

    Article  MathSciNet  MATH  Google Scholar 

  16. Driver, K., Jordaan, K., Mbuyi, N.: Interlacing of the zeros of Jacobi polynomials with different parameters. Numer. Algor. 49, 143–152 (2008). https://doi.org/10.1007/s11075-008-9162-2

    Article  MathSciNet  MATH  Google Scholar 

  17. Driver, K., Jooste, A.: Interlacing of zeros of quasi-orthogonal Meixner polynomials. Quaest. Math. 40, 477–490 (2017). https://doi.org/10.2989/16073606.2017.1298681

    Article  MathSciNet  MATH  Google Scholar 

  18. Driver, K., Jordaan, K.: Zeros of Jacobi polynomials \({P}_{n}^{({{\alpha }},\beta )},-2<{{\alpha }},\beta <-1\). Numer. Algor. 79(4), 1075–1085 (2018). https://doi.org/10.1007/s11075-018-0474-6

    Article  MATH  Google Scholar 

  19. Driver, K., Jordaan, K.: Zeros of quasi-orthogonal Jacobi polynomials. SIGMA 12, 042, 13 pages (2016). https://doi.org/10.3842/SIGMA.2016.042

    Article  MathSciNet  MATH  Google Scholar 

  20. Kar, P.P., Gochhayat, P.: Zeros of quasi-orthogonal q-Laguerre polynomials. J. Math. Anal. Appl. 506 (1), 125605, 11 pages (2022). https://doi.org/10.1016/j.jmaa.2021.125605

    Article  MathSciNet  MATH  Google Scholar 

  21. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944). https://doi.org/10.2307/3609752

    MATH  Google Scholar 

  22. Driver, K., Muldoon, M.E.: Bounds for extreme zeros of quasi-orthogonal ultraspherical polynomials. J. Class. Anal. 9, 69–78 (2016). https://doi.org/10.7153/jca-09-08

    Article  MathSciNet  MATH  Google Scholar 

  23. Gupta, D.P., Muldoon, M.E.: Inequalities for the smallest zeros of Laguerre polynomials and their q-analogues. J. Ineq. Pure Appl. Math. 8(1), Article 24 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Ismail, M.E.H., Muldoon, M.E.: Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2, 1–21 (1995). https://doi.org/10.4310/MAA.1995.v2.n1.a1

    Article  MathSciNet  MATH  Google Scholar 

  25. Gochhayat, P., Jordaan, K., Raghavendar, K., Swaminathan, A.: Interlacing properties and bounds for zeros of 2ϕ1 hypergeometric and little q-Jacobi polynomials. Ramanujan J. 40, 45–62 (2016). https://doi.org/10.1007/s11139-015-9709-5

    Article  MathSciNet  MATH  Google Scholar 

  26. Kar, P.P., Jordaan, K., Gochhayat, P.: Stieltjes interlacing of zeros of little q-Jacobi and q-Laguerre polynomials from different sequences. Numer. Algor. (2022). https://doi.org/10.1007/s11075-022-01387-8https://doi.org/10.1007/s11075-022-01387-8

  27. Tcheutia, D.D., Jooste, A.S., Koepf, W.: Mixed recurrence equations and interlacing properties for zeros of sequences of classical q-orthogonal polynomials. Appl. Numer. Math. 125, 86–102 (2018). https://doi.org/10.1016/j.apnum.2017.11.003

    Article  MathSciNet  MATH  Google Scholar 

  28. Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications, vol. 98. Cambridge University Press, Cambridge (2005). https://doi.org/10.1017/CBO9781107325982

    Google Scholar 

Download references

Acknowledgements

The authors thank the referee for constructive remarks that improve the presentation of the manuscript.

Funding

This study was supported by OURIIP, Govt. of Odisha, India, with Sanction Number - 1040/69/OSHEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyabrat Gochhayat.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors have no objections if the manuscript is published by Springer Nature.

Competing interests

The authors declare no competing interests.

Additional information

Author contributions

Both authors contributed equally.

Human and animal ethics

Not applicable.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, P.P., Gochhayat, P. Interlacing and bounds of zeros of quasi-orthogonal little q-Jacobi polynomials. Numer Algor 93, 1157–1170 (2023). https://doi.org/10.1007/s11075-022-01460-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01460-2

Keywords

Mathematics Subject Classification (2010)

Navigation