Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Numerical approximations to a singularly perturbed convection-diffusion problem with a discontinuous initial condition

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A singularly perturbed parabolic problem of convection-diffusion type with a discontinuous initial condition is examined. An analytic function is identified which matches the discontinuity in the initial condition and also satisfies the homogenous parabolic differential equation associated with the problem. The difference between this analytical function and the solution of the parabolic problem is approximated numerically, using an upwind finite difference operator combined with an appropriate layer-adapted mesh. The numerical method is shown to be parameter-uniform. Numerical results are presented to illustrate the theoretical error bounds established in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. As in [3], we define the space \({\mathcal C}^{0+\gamma }(D )\), where DR2 is an open set, as the set of all functions that are Hölder continuous of degree γ ∈ (0,1) with respect to the metric ∥⋅∥, where for all \(\textbf {p}_{i}=(x_{i},t_{i}), \in \mathbf {R}^{2}, i=1,2; \ \Vert \textbf {p}_{1}- \textbf {p}_{2} \Vert ^{2} = (x_{1}-x_{2})^{2} + \vert t_{1} -t_{2} \vert \). For f to be in \({\mathcal C}^{0+\gamma }(D ) \) the following semi-norm needs to be finite

    $$ \lceil f \rceil_{0+\gamma , D} = \sup_{\textbf{p}_{1} \neq \textbf{p}_{2}, \ \textbf{p}_{1}, \textbf{p}_{2}\in D} \frac{\vert f(\textbf{p}_{1}) - f(\textbf{p}_{2}) \vert}{\Vert \textbf{p}_{1}- \textbf{p}_{2} \Vert^{\gamma}} . $$

    The space \({\mathcal C}^{n+ \gamma }(D ) \) is defined by

    $$ {\mathcal C}^{n+\gamma }(D ) = \left \{ z : \frac{\partial^{i+j} z}{ \partial x^{i} \partial t^{j} } \in {\mathcal C}^{0+\gamma }(D), \ 0 \leq i+2j \leq n \right \}, $$

    and ∥⋅∥n+γ, ⌈⋅⌉n+γ are the associated norms and semi-norms.

  2. We use the following notation for the finite difference approximations of the derivatives:

    $$ \begin{array}{@{}rcl@{}} D^{-}_{t} Y (x_{i},t_{j}) := \frac{Y(x_{i},t_{j})-Y(x_{i},t_{j-1})}{k}, \quad D^{-}_{x} Y(x_{i},t_{j}) :=\frac{Y(x_{i},t_{j})-Y (x_{i-1},t_{j})}{h_{i}}, \\ D^{+}_{x} Y (x_{i},t_{j}) :=\frac{Y(x_{i+1},t_{j})-Y(x_{i},t_{j})}{h_{i+1}}, \ {\delta^{2}_{x}} Y(x_{i},t_{j}) := \frac{2}{h_{i}+h_{i+1}}(D_{x}^{+}Y(x_{i},t_{j})-D^{-}_{x} Y(x_{i},t_{j})). \end{array} $$
  3. Bobisud [1] constructs an asymptotic expansion for the solution of (??) of the form \(u=y+R,\ \Vert R \Vert \leq C \sqrt {\varepsilon }\). The construction of y in [1, (10)] identifies the leading term ψ0(x,t) in (23). However, for the numerical analysis, this basic asymptotic expansion will not suffice as parameter explicit bounds on the partial derivatives of the remainder are required to establish an error bound on any numerical approximations.

References

  1. Bobisud, L.: Parabolic equations with a small parameter and discontinuous data. J. Math. Anal. Appl. 26, 208–220 (1969)

    Article  MathSciNet  Google Scholar 

  2. Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust computational techniques for boundary layers. CRC Press, Florida, USA (2000)

    Book  Google Scholar 

  3. Friedman, A.: Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffs, N.J. (1964)

    MATH  Google Scholar 

  4. Gracia, J.L., O’Riordan, E.: A singularly perturbed convection–diffusion problem with a moving interior layer. Int. J. Num. Anal. Mod. 9(4), 823–843 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Gracia, J.L., O’Riordan, E.: Parameter-uniform approximations for a singularly perturbed convection-diffusion problems with a discontinuous initial condition. Appl. Numer. Math. 162, 106–123 (2021)

    Article  MathSciNet  Google Scholar 

  6. Gracia, J.L., O’Riordan, E.: Numerical approximation of solution derivatives of singularly perturbed parabolic problems of convection–diffusion type. Math. Comput. 85, 581–599 (2016)

    Article  MathSciNet  Google Scholar 

  7. Gracia, J.L., O’Riordan, E.: Singularly perturbed reaction-diffusion problems with discontinuities in the initial and/or the boundary data. J. Comput. Appl. Math. 370, 112638, 17 (2020)

    Article  MathSciNet  Google Scholar 

  8. Miller, J.J.H., O’Riordan, E., Shishkin, G. I., Shishkina, L.P.: Fitted mesh methods for problems with parabolic boundary layers. Mathematical Proceedings of the Royal Irish Academy vol. 98A 173–190 (1998)

  9. Shishkin, G.I.: Grid approximation of singularly perturbed parabolic convection-diffusion equations with a piecewise-smooth initial condition. Zh. Vychisl. Mat. Mat. Fiz. 46(1), 52–76 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Shishkin, G.I.: Discrete approximations of singularly perturbed elliptic and parabolic equations. Russ. Akad. Nauk, Ural Section Ekaterinburg, (in Russian) (1992)

  11. Stynes, M., O’Riordan, E.: A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem. J. Math. Anal. Appl. 214, 36–54 (1997)

    Article  MathSciNet  Google Scholar 

  12. Vassilev, D., Yotov, I.: Coupling Stokes-Darcy flow with transport. SIAM J. Sci. Comput. 31(5), 3661–3684 (2009)

    Article  MathSciNet  Google Scholar 

  13. Zhemukhov, U.K.h.: Parameter-uniform error estimate for the implicit four-point scheme for a singularly perturbed heat equation with corner singularities. Trans. Differ. Uravn. Differ. Equ. 50(7), 923–936 (2014). Differ. Equ. 50(7), (2014), 913–926

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Gracia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by the Institute of Mathematics and Applications (IUMA), the projects PID2019-105979GB-I00 and PGC2018-094341-B-I00 and the Diputación General de Aragón (E24-17R).

Appendix: : Set of singular functions

Appendix: : Set of singular functions

Below, we construct a set of functions \(\{ \psi _{i} \}_{i=0}^{4}\) such that Lψi = 0; \( \psi _{i} \in C^{i-1+\gamma } (\bar { Q}), \ i \geq 1\) and each function ψi is smooth within the open region QΓ.

Define the two singular functions (see [1, (10)])

$$ \psi_{0}(x,t) := \text{erfc} \left (\frac{d(t)-x}{2\sqrt{\varepsilon t}} \right) ,\quad E(x,t) := e^{-\frac{(x-d(t))^{2}}{4\varepsilon t}}. $$
(20)

Then, we explicitly write out the derivatives of these two functions

$$ \begin{array}{@{}rcl@{}} \frac{\partial \psi_{0}}{\partial x} &=& \frac{1}{\sqrt{\varepsilon \pi t}} E , \quad \frac{\partial E}{\partial x} = \frac{d(t)-x}{2\varepsilon t} E,\\ \varepsilon \frac{\partial^{2} \psi_{0}}{\partial x^{2}} &=& \frac{d(t)-x}{2t\sqrt{\varepsilon \pi t}} E, \quad \varepsilon \frac{\partial^{2} E}{\partial x^{2}} = \left( \frac{(d(t)-x)^{2}}{2\varepsilon t} -1 \right)\frac{ E}{2t},\\\\ \frac{\partial \psi_{0}}{\partial t} &=& \frac{1}{\sqrt{\varepsilon \pi t}} \left( \frac{(d(t)-x)-2ta}{2 t} \right) E, \\ \frac{\partial E}{\partial t} &=& \frac{(d(t)-x)}{2\varepsilon t} \left( \frac{(d(t)-x)}{2t} -a(t)\right) E = \frac{\sqrt{ \pi }(d(t)-x)}{2\sqrt{\varepsilon t}}\frac{\partial \psi_{0}}{\partial t}. \end{array} $$

Hence, Lψ0 = 0. We now construct the singular function ψ1(x,t). The function \((d(t)-x) \psi _{0} \in C^{\gamma } (\bar { Q})\), but L((d(t) − x)ψ0)≠ 0. From the expressions above, one can check that

$$ L ((d(t)-x) \psi_{0}) = L\left( 2\frac{\sqrt{\varepsilon t}}{\sqrt{\pi}} E\right). $$

In addition, \(\sqrt {t} E\in C^{\gamma } (\bar { Q})\). Then, we define the continuous function

$$ \psi_{1}(x,t) := (d(t)-x) \psi_{0} -2\frac{\sqrt{\varepsilon t}}{\sqrt{\pi}} E. $$
(21)

The remaining functions are similarly constructed. They are given by

$$ \psi_{i} := (d(t)-x) \psi_{i-1}+2\varepsilon t (i-1) \psi_{i-2},\qquad i=2,3,4; $$
(22)

and they satisfy for i = 1, 2, 3, 4

$$ \begin{array}{@{}rcl@{}} \frac{\partial \psi_{i}}{\partial x} = -i \psi_{i-1},\ L\psi_{i} =0 \quad \text{and} \quad \psi_{i} \in C^{i-1+\gamma} (\bar { Q)}. \end{array} $$

Either side of x = d, we have the Taylor expansions for the initial condition

$$ \phi (x) = {\sum}_{i=0}^{4} \phi^{(i)} (d^{*}) \frac{(x-d)^{i}}{i!} + R_{0}(x),\quad d^{*}= \left\{ \begin{array}{ll} d^{-} \quad \text{ if } x < d \\ d^{+} \quad \text{ if } x>d \end{array}\right.; $$

with R0(x) ∈ C4(0, 1). Hence, we present the following expansionFootnote 3

$$ u (x,t)= 0.5 {\sum}_{i=0}^{4} [\phi^{(i)} ] (d) \frac{(-1)^{i}}{i!} \psi_{i} (x,t) + R (x,t). $$
(23)

Note that for i = 1, 2, 3, 4

$$ \frac{\partial^{i} \psi_{i}}{\partial x^{i}} = (-1)^{i}i! \psi_{0} \quad \text{and} \quad [ \psi_{0} ] (d)=2, $$

which implies that [u(i)](d, 0) = [ϕ(i)](d).

Define the paramaterized exponential function

$$ E_{\gamma} (x,t) := e^{-\frac{\gamma (x-d(t))^{2}}{4\varepsilon t}},\qquad 0 < \gamma < 1. $$

Using the inequality \(\text {erfc}(z) \leq C e^{-z^{2}} \leq C e^{\gamma ^{2}/4}e^{-\gamma z}, \forall z\) it follows that

$$ \begin{array}{@{}rcl@{}} \left \vert \frac{\partial^{j} }{\partial t^{j} } \psi_{0}(x,t)\right \vert, \left \vert \frac{\partial^{j} }{\partial t^{j} } E(x,t)\right \vert & \leq& C \left( \frac{1}{t} +\frac{1}{\sqrt {\varepsilon t}}\right)^{j} E_{\gamma} (x,t);\quad j=1,2; \end{array} $$
(24a)
$$ \begin{array}{@{}rcl@{}} \left \vert \frac{\partial^{i} }{\partial x^{i} } \psi_{0}(x,t)\right \vert, \left \vert \frac{\partial^{i} }{\partial x^{i} } E(x,t)\right \vert & \leq& C\left( \frac{1}{\sqrt {\varepsilon t}}\right)^{i} E_{\gamma} (x,t), \quad 0\leq i \leq 4; \end{array} $$
(24b)
$$ \begin{array}{@{}rcl@{}} \left \vert \frac{\partial }{\partial t } \psi_{1}(x,t)\right \vert &\leq& C \left( 1 +\sqrt {\frac{\varepsilon}{ t}}\right) E (x,t), \end{array} $$
(24c)
$$ \begin{array}{@{}rcl@{}} \left\vert \frac{\partial^{2} }{\partial t^{2} } \psi_{1}(x,t)\right \vert & \leq &C\left (\frac1{t}+\frac{1}{t}\sqrt{\frac{\varepsilon}{t}}+\frac1{\sqrt{\varepsilon t}} \right) E_{\gamma} (x,t), \end{array} $$
(24d)
$$ \begin{array}{@{}rcl@{}} \left \vert \frac{\partial^{i} }{\partial x^{i} } \psi_{1}(x,t) \right \vert &\leq& C\left( \frac{1}{\sqrt {\varepsilon t}}\right)^{i-1} E_{\gamma} (x,t), \ 0 \leq i \leq 4. \end{array} $$
(24e)

For the next terms, we can also establish the bounds

$$ \left \vert \frac{\partial }{\partial t } \psi_{2}(x,t)\right \vert \leq C,\quad \left \vert \frac{\partial^{2} }{\partial x^{2} } \psi_{2}(x,t)\right \vert \leq C; $$
(25a)

on the second time derivatives

$$ \begin{array}{@{}rcl@{}} \left \vert \frac{\partial^{2} }{\partial t^{2} } \psi_{2}(x,t)\right \vert &\leq& C \varepsilon \left( \frac{1}{t} +\frac{1}{\sqrt {\varepsilon t}}+ \frac{1}{\varepsilon} \right) E_{\gamma} (x,t) +C \\ & \leq& C \left (1+ \frac{\varepsilon}{t} \right) E_{\gamma} (x,t) +C, \end{array} $$
(25b)
$$ \begin{array}{@{}rcl@{}} \left \vert \frac{\partial^{2} }{\partial t^{2} } \psi_{3}(x,t)\right \vert &\leq& C \sqrt{\varepsilon t} \left( 1+ \frac{\varepsilon}{t}\right) E_{\gamma} (x,t) +C\vert d(t) -x \vert , \end{array} $$
(25c)
$$ \begin{array}{@{}rcl@{}} \left \vert \frac{\partial^{2} }{\partial t^{2} } \psi_{4}(x,t)\right \vert &\leq& C \varepsilon E_{\gamma} (x,t)+C(\varepsilon +\vert d(t) -x\vert)^{2}; \end{array} $$
(25d)

on the fourth space derivatives

$$ \left \vert \frac{\partial^{4} }{\partial x^{4} } \psi_{j}(x,t) \right \vert \leq C(\sqrt{\varepsilon t})^{j-4} E_{\gamma} (x,t), \quad j=2,3,4 $$
(25e)

and on the third space derivatives

$$ \left\vert \frac{\partial^{3} }{\partial x^{3} } \psi_{2}(x,t) \right \vert \leq C \frac{1}{\sqrt {\varepsilon t}} E_{\gamma} (x,t), \quad \left \vert \frac{\partial^{3} }{\partial x^{3} } \psi_{3}(x,t)\right \vert , \left \vert \frac{\partial^{3} }{\partial x^{3} } \psi_{4}(x,t) \right\vert \leq C. $$
(25f)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gracia, J.L., O’Riordan, E. Numerical approximations to a singularly perturbed convection-diffusion problem with a discontinuous initial condition. Numer Algor 88, 1851–1873 (2021). https://doi.org/10.1007/s11075-021-01098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01098-6

Keywords

Mathematics Subject Classification 2010

Navigation