Abstract
The concept of Gauss quadrature can be generalized to approximate linear functionals with complex moments. Following the existing literature, this survey will revisit such generalization. It is well known that the (classical) Gauss quadrature for positive definite linear functionals is connected with orthogonal polynomials, and with the (Hermitian) Lanczos algorithm. Analogously, the Gauss quadrature for linear functionals is connected with formal orthogonal polynomials, and with the non-Hermitian Lanczos algorithm with look-ahead strategy; moreover, it is related to the minimal partial realization problem. We will review these connections pointing out the relationships between several results established independently in related contexts. Original proofs of the Mismatch Theorem and of the Matching Moment Property are given by using the properties of formal orthogonal polynomials and the Gauss quadrature for linear functionals.
Similar content being viewed by others
References
Antoulas, A. C.: Approximation of Large-Scale Dynamical Systems, Advances in Design and Control, vol. 6. With a foreword by Jan C. Willems, SIAM, Philadelphia, PA (2005)
Bai, Z.: Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem. Math. Comp. 62(205), 209–226 (1994). https://doi.org/10.2307/2153404
Bai, Z., Day, D. M., Ye, Q.: ABLE: an adaptive block Lanczos method for non-Hermitian eigenvalue problems. SIAM J. Matrix Anal. Appl. 20(4), 1060–1082 (1999). https://doi.org/10.1137/S0895479897317806
Beckermann, B.: Complex Jacobi matrices. J. Comput. Appl. Math. 127, 17–65 (2001)
Berlekamp, E. R.: Algebraic Coding Theory. McGraw-Hill Book Co., New York-Toronto Ont.-London (1968)
Boley, D. L., Lee, T. J., Luk, F. T.: The Lanczos algorithm and Hankel matrix factorization. Linear Algebra Appl. 172, 109–133 (1992). https://doi.org/10.1016/0024-3795(92)90022-3. Second NIU Conference on Linear Algebra, Numerical Linear Algebra and Applications (DeKalb, IL, 1991)
Brezinski, C.: Padé-type approximation and general orthogonal polynomials. Internat. Ser. Numer. Math Birkhäuser (1980)
Brezinski, C.: Computational aspects of linear control Numerical Methods and Algorithms, vol. 1. Kluwer Acad. Publ., Dordrecht (2002)
Brezinski, C., Redivo Zaglia, M., Sadok, H.: Avoiding breakdown and near-breakdown in Lanczos type algorithms. Numer. Algorithms 1(3), 261–284 (1991). https://doi.org/10.1007/BF02142326
Brezinski, C., Redivo Zaglia, M., Sadok, H.: A breakdown-free Lanczos type algorithm for solving linear systems. Numer. Math. 63(1), 29–38 (1992). https://doi.org/10.1007/BF01385846
Bultheel, A., Van Barel, M.: Linear Algebra, Rational Approximation and Orthogonal Polynomials, Stud. Comput Math., vol. 6. North-Holland Publishing Co., Amsterdam (1997)
Chebyshev, P.: Sur les Fractions Continues (1855). Reprinted in Oeuvres I, vol. 11, pp 203–230. Chelsea, New York (1962)
Chebyshev, P.: Le développement des fonctions à une seule variable (1859). Reprinted in Oeuvres I, vol. 19, pp 501–508. Chelsea, New York (1962)
Chihara, T. S.: On quasi-orthogonal polynomials. Proc. Amer. Math. Soc. 8, 765–767 (1957). https://doi.org/10.2307/2033295
Chihara, T. S.: An Introduction to Orthogonal Polynomials, Mathematics and its Applications, vol. 13. Gordon and Breach Science Publishers, New York (1978)
Christoffel, E. B.: Über die Gaußische Quadratur und eine Verallgemeinerung derselben. J. Reine Angew. Math. 55, 61–82 (1858). Reprinted in Gesammelte mathematische Abhandlungen I (B. G. Teubner, Leipzig, 1910), pp. 65–87
Cullum, J., Kerner, W., Willoughby, R.A.: A generalized nonsymmetric Lanczos procedure. Comput. Phys. Commun. 53(1), 19–48 (1989). https://doi.org/10.1016/0010-4655(89)90146-X
Cullum, J., Willoughby, R. A.: A practical procedure for computing eigenvalues of large sparse nonsymmetric matrices. In: North-Holland Mathematics Studies, vol. 127, pp 193–240. Elsevier (1986)
Cybenko, G.: An explicit formula for Lanczos polynomials. Linear Algebra Appl. 88, 99–115 (1987)
Day, D.M.: Semi-duality in the two-sided Lanczos algorithm. Ph.D. thesis, University of California, Berkeley. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9430449 (1993)
Day, D. M.: An efficient implementation of the nonsymmetric Lanczos algorithm. SIAM J. Matrix Anal. Appl. 18(3), 566–589 (1997). https://doi.org/10.1137/S0895479895292503
Draux, A.: Polynômes Orthogonaux Formels, Lecture Notes in Math., vol. 974. Springer, Berlin (1983)
Draux, A.: On quasi-orthogonal polynomials. J. Approx. Theory 62(1), 1–14 (1990). https://doi.org/10.1016/0021-9045(90)90042-O
Draux, A.: Formal orthogonal polynomials revisited. Applications. Numer. Algorithms 11(1), 143–158 (1996). https://doi.org/10.1007/BF02142493
Draux, A.: On quasi-orthogonal polynomials of order r. Integral Transforms Spec. Funct. 27(9), 747–765 (2016). https://doi.org/10.1080/10652469.2016.1197922
Fenu, C., Martin, D., Reichel, L., Rodriguez, G.: Block Gauss and Anti-Gauss quadrature with application to networks. SIAM J. Matrix Anal. Appl. 34(4), 1655–1684 (2013). https://doi.org/10.1137/120886261
Freund, R. W.: The Look-Ahead Lanczos Process for Large Nonsymmetric Matrices and Related Algorithms. In: Moonen, M. S., Golub, G. H., de Moor, B. L. R. (eds.) Linear Algebra for Large Scale and Real-Time Applications, NATO ASI Series, vol. 232, pp 137–163. Kluwer Acad. Publ., Dordrecht (1993)
Freund, R. W., Gutknecht, M. H., Nachtigal, N. M.: An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput. 14(1), 137–158 (1993)
Freund, R. W., Hochbruck, M.: Gauss Quadratures Associated With the Arnoldi Process and the Lanczos Algorithm. In: Moonen, M. S., Golub, G. H., de Moor, B. L. R. (eds.) Linear Algebra for Large Scale and Real-Time Applications, NATO ASI Series, vol. 232, pp 377–380. Kluwer Acad. Publ., Dordrecht (1993)
Freund, R. W., Zha, H.: A look-ahead algorithm for the solution of general Hankel systems. Numer. Math. 64(1), 295–321 (1993). https://doi.org/10.1007/BF01388691
Gantmacher, F.R.: On the algebraic analysis of Krylov’s method of transforming the secular equation. Trans. Second Math. Congress II, 45–48 (1934). In Russian. Title translation as in [32]
Gantmacher, F. R.: The Theory of Matrices, vol. 1, 2. Chelsea Publishing Co., New York (1959)
Gautschi, W.: A survey of Gauss-Christoffel quadrature formulae. In: E. B. Christoffel (Aachen/Monschau, 1979), pp 72–147. Basel, Birkhäuser (1981)
Gautschi, W.: Orthogonal polynomials: computation and approximation. Numer. Math. Sci. Comput. Oxford University Press, New York (2004)
Gautschi, W.: Numerical Analysis. Birkhäuser, Boston (2011). https://books.google.it/books?id=-fgjJF9yAIwC
Gilbert, E.: Controllability and observability in multivariable control systems. SIAM J. Control 1, 128–151 (1963)
Golub, G. H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton Ser. Appl. Math. Princeton University Press, Princeton (2010)
Golub, G. H., Van Loan, C. F.: Matrix Computations. Johns Hopkins Stud. Math. Sci., 4th edn. Johns Hopkins University Press, Baltimore (2013)
Gragg, W. B.: Matrix interpretations and applications of the continued fraction algorithm. Rocky Mountain J. Math. 4, 213–225 (1974)
Gragg, W. B., Lindquist, A.: On the partial realization problem. Linear Algebra Appl. 50, 277–319 (1983)
Günnel, A., Herzog, R., Sachs, E.: A note on preconditioners and scalar products in Krylov subspace methods for self-adjoint problems in Hilbert space. Elect. Trans. Numer. Anal. 41, 13–20 (2014)
Guo, H., Renaut, R. A.: Estimation of uTf(A)v for large-scale unsymmetric matrices. Numer. Linear Algebra Appl. 11(1), 75–89 (2004). https://doi.org/10.1002/nla.334
Gutknecht, M. H.: A completed theory of the unsymmetric Lanczos process and related algorithms. I. SIAM J. Matrix Anal. Appl. 13(2), 594–639 (1992)
Gutknecht, M. H.: A completed theory of the unsymmetric Lanczos process and related algorithms. II. SIAM J. Matrix Anal. Appl. 15(1), 15–58 (1994)
Gutknecht, M. H.: The Lanczos Process and Padé approximation. In: Proceedings of the Cornelius Lanczos International Centenary Conference (Raleigh, NC, 1993), pp 61–75. SIAM, Philadelphia (1994)
Heinig, G., Jankowski, P.: Kernel structure of block Hankel and Toeplitz matrices and partial realization. Linear Algebra Appl. 175, 1–30 (1992). https://doi.org/10.1016/0024-3795(92)90299-P
Heinig, G., Rost, K.: Algebraic methods for Toeplitz-like matrices and operators, Operator Theory: Advances and Applications, vol. 13. Basel, Birkhäuser (1984)
Hestenes, M. R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards 49, 409–436 (1952)
Higham, N. J.: Functions of Matrices. Theory and Computation. SIAM, Philadelphia (2008)
Ho, B., Kalman, R. E.: Effective construction of linear state-variable models from input/output functions. at-Automatisierungstechnik 14(1-12), 545–548 (1966)
Hochbruck, M.: The Padé Table and its Relation to Certain Numerical Algorithms. Habilitation thesis, Universität Tübingen (1996)
Householder, A. S., Bauer, F. L.: On certain methods for expanding the characteristic polynomial. Numer. Math. 1, 29–37 (1959)
Iohvidov, I. S.: Hankel and Toeplitz Matrices and Forms. Birkhäuser, Boston (1982). Algebraic theory, Translated from the Russian by G. Philip A. Thijsse, with an introduction by I. Gohberg
Kailath, T.: Linear Systems. Prentice-Hall, Inc., Englewood Cliffs (1980). Prentice-Hall Information and System Sciences Series
Kalman, R. E.: Canonical structure of linear dynamical systems. Proc. Nat. Acad. Sci. U.S.A. 48, 596–600 (1962)
Kalman, R. E.: Mathematical description linear systems. SIAM J. Control 1, 152–192 (1963)
Kalman, R. E.: On partial realizations, transfer functions, and canonical forms. Acta Polytech Scand. Math. Comput. Sci. Ser. 31, 9–32 (1979)
Kautský, J.: Matrices related to interpolatory quadratures. Numer. Math. 36(3), 309–318 (1980/81). https://doi.org/10.1007/BF01396657
Krall, H. L., Sheffer, I. M.: Differential equations of infinite order for orthogonal polynomials. Annali di Matematica Pura ed Applicata 74(1), 135–172 (1966). https://doi.org/10.1007/BF02416454
Kung, S. Y.: Multivariable and multidimensional systems: analysis and design. Ph.D. thesis, Stanford University Stanford (1977)
Kwon, K. H., Littlejohn, L. L.: Classification of classical orthogonal polynomials. J. Korean Math. Soc 34(4), 973–1008 (1997)
Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Research Nat. Bur. Standards 45, 255–282 (1950)
Lanczos, C.: Solution of systems of linear equations by minimized iterations. J. Research Nat. Bur. Standards 49, 33–53 (1952)
Liesen, J., Strakoš, Z.: Krylov Subspace Methods: Principles and Analysis. Numer. Math. Sci. Comput. Oxford University Press, Oxford (2013)
Lorentzen, L., Waadeland, H.: Continued Fractions with Applications, Stud. Comput Math., vol. 3. North-Holland Publishing Co., Amsterdam (1992)
Malék, J., Strakoš, Z.: Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs: SIAM Spotlights. SIAM, Philadelphia (2015). https://books.google.it/books?id=aWDxBQAAQBAJ
Massey, J. L.: Shift-register synthesis and BCH decoding. IEEE Trans. Information Theory IT-15, 122–127 (1969)
Milovanović, G.V., Cvetković, A.S.: Complex Jacobi Matrices and quadrature rules. Filomat 17, 117–134 (2003). http://www.jstor.org/stable/43998655
Moore, B. C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Automat. Control 26 (1), 17–32 (1981)
Nachtigal, N. M.: A look-ahead variant of the Lanczos algorithm and its application to the quasi-minimal residual method for non-Hermitian linear systems. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge (1991)
Paige, C. C., Panayotov, I., Zemke, J. P. M.: An augmented analysis of the perturbed two-sided Lanczos tridiagonalization process. Linear Algebra Appl. 447, 119–132 (2014). https://doi.org/10.1016/j.laa.2013.05.009https://doi.org/10.1016/j.laa.2013.05.009
Parlett, B. N.: Reduction to tridiagonal form and minimal realizations. SIAM J. Matrix Anal. Appl. 13(2), 567–593 (1992)
Parlett, B. N., Taylor, D. R., Liu, Z. A.: A look-ahead Lanczos algorithm for unsymmetric matrices. Math. Comp. 44(169), 105–124 (1985). https://doi.org/10.2307/2007796
Piñar, M., Ramírez, V.: Matrix interpretation of formal orthogonal polynomials for nondefinite functionals. J. Comput. Appl. Math. 18(3), 265–277 (1987). https://doi.org/10.1016/0377-0427(87)90001-X
Pozza, S., Pranić, M. S., Strakoš, Z.: Gauss quadrature for quasi-definite linear functionals. IMA J. Numer. Anal. 37(3), 1468–1495 (2017). https://doi.org/10.1093/imanum/drw032
Pozza, S., Pranić, M. S., Strakoš, Z.: The Lanczos algorithm and complex Gauss quadrature. Electron. Trans. Numer. Anal. 50, 1–19 (2018)
Pozza, S., Strakoš, Z.: Algebraic description of the finite Stieltjes moment problem. Linear Algebra Appl. 561, 207–227 (2019). https://doi.org/10.1016/j.laa.2018.09.026
Riesz, M.: Sur le problème des moments. Troisième Note. Ark. Mat. Fys 17(16), 1–52 (1923)
Rutishauser, H.: Beiträge zur Kenntnis des Biorthogonalisierungs-Algorithmus von Lanczos. Z. Angew. Math. Physik 4, 35–56 (1953)
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
Stieltjes, T. J.: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 8(4), J. 1–122 (1894). Reprinted in Oeuvres II (P. Noordhoff, Groningen, 1918), pp. 402–566. Investigations on continued fractions in Thomas Jan Stieltjes, Collected Papers, Vol. II (Springer-Verlag, Berlin, 1993), pp. 609–745
Strakoš, Z.: Model reduction using the Vorobyev moment problem. Numer. Algorithms 51(3), 363–379 (2009). https://doi.org/10.1007/s11075-008-9237-0
Szegö, G.: Orthogonal Polynomials, Amer. Math. Soc. Colloq Publ., vol. XXIII. American Mathematical Society, New York (1939)
Taylor, D. R.: Analysis of the look ahead Lanczos algorithm. Ph.D. thesis, University of California, Berkeley (1982)
Tong, C. H., Ye, Q.: Analysis of the finite precision bi-conjugate gradient algorithm for nonsymmetric linear systems. Math. Comp. 69(232), 1559–1575 (2000). https://doi.org/10.1090/S0025-5718-99-01171-0https://doi.org/10.1090/S0025-5718-99-01171-0
Vorobyev, Y. V.: Methods of Moments in Applied Mathematics. Translated from the Russian by Bernard Seckler. Gordon and Breach Science Publishers, New York (1965)
Wilkinson, J. H.: The Algebraic Eigenvalue Problem. Monographs on Numerical Analysis. The Clarendon Press Oxford University Press, New York (1988). 1st edn published 1963
Acknowledgments
We would like to thank Zdeněk Strakoš for the helpful comments and improvements suggested.
Funding
This work has been supported by Charles University Research program No. UNCE/SCI/023 and by the Ministry for Scientific and Technological Development, Higher Education and Information Society of R. Srpska.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pozza, S., Pranić, M. The Gauss quadrature for general linear functionals, Lanczos algorithm, and minimal partial realization. Numer Algor 88, 647–678 (2021). https://doi.org/10.1007/s11075-020-01052-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-020-01052-y